This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198069 #14 Oct 30 2021 17:43:48 %S A198069 1,1,1,2,1,2,4,1,2,1,4,8,1,2,1,4,1,2,1,8,16,1,2,1,4,1,2,1,8,1,2,1,4,1, %T A198069 2,1,16,32,1,2,1,4,1,2,1,8,1,2,1,4,1,2,1,16,1,2,1,4,1,2,1,8,1,2,1,4,1, %U A198069 2,1,32,64,1,2,1,4,1,2,1,8,1,2,1,4,1,2 %N A198069 Table read by rows, T(0,0) = 1 and for n>0, 0<=k<=2^(n-1) T(n,k) = gcd(k,2^(n-1)). %H A198069 Reinhard Zumkeller, <a href="/A198069/b198069.txt">Rows n = 0..13 of triangle, flattened</a> %F A198069 For n > 0: Let S be the n-th row, S' = replace the initial term by its double, then row (n+1) = concatenation of S' and the reverse of S' without the initial term. - _Reinhard Zumkeller_, May 26 2013 %e A198069 1 %e A198069 1, 1 %e A198069 2, 1, 2 %e A198069 4, 1, 2, 1, 4 %e A198069 8, 1, 2, 1, 4, 1, 2, 1, 8 %e A198069 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16 %p A198069 # In triangular form: %p A198069 seq(print(seq(gcd(k,2^(n-1)),k=0..2^(n-1))),n=0..6); %t A198069 Join[{1},Flatten[Table[GCD[k,2^(n-1)],{n,10},{k,0,2^(n-1)}]]] (* _Harvey P. Dale_, Oct 30 2021 *) %o A198069 (Haskell) %o A198069 a198069 n k = a198069_tabf !! n !! k %o A198069 a198069_row n = a198069_tabf !! n %o A198069 a198069_tabf = [0] : iterate f [1, 1] where %o A198069 f (x:xs) = ys ++ tail (reverse ys) where ys = (2 * x) : xs %o A198069 -- _Reinhard Zumkeller_, May 26 2013 %Y A198069 Cf. A094373 (row lengths), A045623 (row sums), A011782 (edges and central terms). %K A198069 nonn,tabf %O A198069 0,4 %A A198069 _Peter Luschny_, Nov 12 2011