This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198106 #6 Feb 07 2025 16:44:04 %S A198106 2,1,9,8,5,6,1,3,3,5,4,6,8,1,6,1,8,8,2,3,3,0,7,6,4,3,6,7,1,0,9,0,6,3, %T A198106 1,8,3,0,2,6,1,2,8,5,2,9,8,7,8,1,7,3,2,7,1,0,0,7,3,4,5,3,2,0,2,7,0,9, %U A198106 1,8,0,3,5,6,3,0,6,6,1,0,7,8,5,2,9,2,4,7,7,7,3,9,5,0,9,6,9,6,8 %N A198106 Decimal expansion of least x having x^2+3x=3*cos(x). %C A198106 See A197737 for a guide to related sequences. The Mathematica program includes a graph. %e A198106 least x: -2.19856133546816188233076436710906... %e A198106 greatest x: 0.6525732515333974244412623453464... %t A198106 a = 1; b = 3; c = 3; %t A198106 f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x] %t A198106 Plot[{f[x], g[x]}, {x, -3, 1}] %t A198106 r1 = x /. FindRoot[f[x] == g[x], {x, -2.2, -2.1}, WorkingPrecision -> 110] %t A198106 RealDigits[r1] (* A198106 *) %t A198106 r2 = x /. FindRoot[f[x] == g[x], {x, .64, .65}, WorkingPrecision -> 110] %t A198106 RealDigits[r2] (* A198107 *) %Y A198106 Cf. A197737. %K A198106 nonn,cons %O A198106 1,1 %A A198106 _Clark Kimberling_, Oct 21 2011