cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198107 Decimal expansion of greatest x having x^2+3x=3*cos(x).

This page as a plain text file.
%I A198107 #8 Feb 07 2025 16:44:04
%S A198107 6,5,2,5,7,3,2,5,1,5,3,3,3,9,7,4,2,4,4,4,1,2,6,2,3,4,5,3,4,6,4,8,8,2,
%T A198107 4,9,7,6,4,9,9,2,8,7,6,1,0,9,1,8,7,1,1,5,3,0,9,2,9,0,6,7,8,2,2,7,6,5,
%U A198107 4,4,2,1,9,9,0,9,5,6,9,3,7,0,1,4,2,1,0,8,9,9,5,5,1,8,7,3,1,8,6,9,8,7
%N A198107 Decimal expansion of greatest x having x^2+3x=3*cos(x).
%C A198107 See A197737 for a guide to related sequences. The Mathematica program includes a graph.
%e A198107 least x: -2.19856133546816188233076436710906...
%e A198107 greatest x: 0.6525732515333974244412623453464...
%t A198107 a = 1; b = 3; c = 3;
%t A198107 f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
%t A198107 Plot[{f[x], g[x]}, {x, -3, 1}]
%t A198107 r1 = x /. FindRoot[f[x] == g[x], {x, -2.2, -2.1}, WorkingPrecision -> 110]
%t A198107 RealDigits[r1]  (* A198106 *)
%t A198107 r2 = x /. FindRoot[f[x] == g[x], {x, .64, .65}, WorkingPrecision -> 110]
%t A198107 RealDigits[r2]  (* A198107 *)
%Y A198107 Cf. A197737.
%K A198107 nonn,cons
%O A198107 0,1
%A A198107 _Clark Kimberling_, Oct 21 2011