cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198114 Decimal expansion of least x having 2*x^2+x=2*cos(x).

This page as a plain text file.
%I A198114 #6 Feb 07 2025 16:44:04
%S A198114 1,0,1,7,0,5,4,9,0,0,6,7,5,0,6,0,9,6,9,3,3,1,1,6,5,5,8,3,6,1,7,7,4,5,
%T A198114 8,9,4,7,7,1,6,2,8,8,7,5,9,6,6,0,1,0,6,6,4,6,7,9,0,5,9,1,1,4,9,3,0,8,
%U A198114 5,1,5,3,9,2,6,3,6,1,5,3,4,6,0,6,7,0,2,4,6,8,6,9,6,7,9,5,3,1,4
%N A198114 Decimal expansion of least x having 2*x^2+x=2*cos(x).
%C A198114 See A197737 for a guide to related sequences. The Mathematica program includes a graph.
%e A198114 least x: -1.01705490067506096933116558361774...
%e A198114 greatest x: 0.66996816904693319175093928956216628...
%t A198114 a = 2; b = 1; c = 2;
%t A198114 f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
%t A198114 Plot[{f[x], g[x]}, {x, -2, 1}]
%t A198114 r1 = x /. FindRoot[f[x] == g[x], {x, -1.02, -1.01}, WorkingPrecision -> 110]
%t A198114 RealDigits[r1](* A198114 *)
%t A198114 r2 = x /. FindRoot[f[x] == g[x], {x, .66, .67}, WorkingPrecision -> 110]
%t A198114 RealDigits[r2](* A198115 *)
%Y A198114 Cf. A197737.
%K A198114 nonn,cons
%O A198114 1,4
%A A198114 _Clark Kimberling_, Oct 21 2011