This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198119 #6 Feb 07 2025 16:44:04 %S A198119 8,9,5,6,5,2,3,8,1,3,5,8,4,2,8,9,0,1,2,1,8,1,7,6,4,7,2,1,3,5,3,7,1,4, %T A198119 7,5,8,5,7,2,8,2,6,9,1,0,7,0,9,1,2,9,4,1,6,6,7,0,7,1,1,4,7,3,5,4,5,1, %U A198119 6,6,9,0,9,7,0,1,9,2,6,0,7,5,9,3,8,2,1,7,1,4,6,6,9,5,4,8,4,2,9 %N A198119 Decimal expansion of greatest x having 2*x^2+x=4*cos(x). %C A198119 See A197737 for a guide to related sequences. The Mathematica program includes a graph. %e A198119 least x: -1.1690226923053929102101002288527830... %e A198119 greatest x: 0.89565238135842890121817647213537147... %t A198119 a = 2; b = 1; c = 4; %t A198119 f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x] %t A198119 Plot[{f[x], g[x]}, {x, -2, 1}] %t A198119 r1 = x /. FindRoot[f[x] == g[x], {x, -1.17, -1.16}, WorkingPrecision -> 110] %t A198119 RealDigits[r1](* A198118 *) %t A198119 r2 = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110] %t A198119 RealDigits[r2](* A198119 *) %Y A198119 Cf. A197737. %K A198119 nonn,cons %O A198119 0,1 %A A198119 _Clark Kimberling_, Oct 21 2011