A197737 Decimal expansion of x<0 having x^2+x=cos(x).
1, 2, 5, 1, 1, 5, 1, 8, 3, 5, 2, 2, 0, 7, 6, 4, 8, 1, 1, 5, 9, 2, 8, 7, 0, 0, 6, 8, 7, 8, 8, 1, 6, 1, 8, 5, 9, 9, 4, 5, 3, 5, 6, 1, 0, 8, 5, 8, 8, 9, 6, 8, 6, 3, 6, 2, 0, 1, 7, 8, 2, 8, 1, 2, 1, 0, 3, 6, 0, 1, 9, 1, 8, 2, 3, 8, 2, 1, 0, 9, 1, 0, 4, 1, 1, 2, 7, 3, 5, 7, 6, 5, 9, 4, 8, 6, 8, 4, 2
Offset: 1
Examples
negative: -1.25115183522076481159287006878816185994... positive: 0.55000934992726156666495361947172926116...
Crossrefs
Cf. A197738.
Programs
-
Mathematica
(* Program 1: A197738 *) a = 1; b = 1; c = 1; f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x] Plot[{f[x], g[x]}, {x, -2, 1}] r1 = x /. FindRoot[f[x] == g[x], {x, -1.26, -1.25}, WorkingPrecision -> 110] RealDigits[r1] (* A197737 *) r1 = x /. FindRoot[f[x] == g[x], {x, .55, .551}, WorkingPrecision -> 110] RealDigits[r1] (* A197738 *) (* Program 2: implicit surface of x^2+u*x=v*cos(x) *) f[{x_, u_, v_}] := x^2 + u*x - v*Cos[x]; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0, 20}, {v, u, 20}]; ListPlot3D[Flatten[t, 1]] (* for A197737 *)
-
PARI
A197737_vec(N=150)={localprec(N+10); digits(solve(x=-1.5,-1,x^2+x-cos(x))\.1^N)} \\ M. F. Hasler, Aug 05 2021
Comments