A198135 Decimal expansion of greatest x having 2*x^2+3x=4*cos(x).
6, 9, 7, 5, 3, 4, 5, 5, 5, 2, 2, 8, 4, 1, 2, 9, 9, 3, 7, 9, 5, 1, 7, 4, 0, 6, 6, 2, 5, 2, 1, 2, 9, 8, 8, 7, 4, 6, 5, 4, 7, 9, 0, 3, 6, 1, 1, 5, 3, 4, 4, 7, 5, 7, 6, 5, 0, 6, 4, 9, 3, 5, 8, 6, 6, 2, 0, 1, 5, 2, 5, 6, 1, 6, 3, 4, 3, 2, 5, 0, 2, 2, 8, 7, 2, 3, 3, 1, 4, 5, 0, 3, 7, 7, 5, 7, 0, 0, 6
Offset: 0
Examples
Least x: -1.5399952272668390818059885802040... Greatest x: 0.6975345552284129937951740662521298...
Crossrefs
Cf. A197737.
Programs
-
Mathematica
a = 2; b = 3; c = 4; f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x] Plot[{f[x], g[x]}, {x, -2, 1}] r1 = x /. FindRoot[f[x] == g[x], {x, -1.54, -1.539}, WorkingPrecision -> 110] RealDigits[r1] (* A198134 *) r2 = x /. FindRoot[f[x] == g[x], {x, .79, .70}, WorkingPrecision -> 110] RealDigits[r2] (* A198135 *)
Comments