cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198136 Decimal expansion of least x having 2*x^2-4x=-3*cos(x).

This page as a plain text file.
%I A198136 #8 Feb 07 2025 16:44:05
%S A198136 8,5,8,7,6,9,7,1,3,6,9,7,6,1,4,4,2,1,1,9,3,1,0,4,3,2,1,8,1,0,5,3,3,0,
%T A198136 8,6,1,1,8,5,6,5,7,7,3,4,6,8,7,1,4,7,4,5,8,5,1,7,3,6,1,6,4,0,8,0,2,9,
%U A198136 2,2,0,6,4,7,4,8,6,2,6,4,9,1,8,0,5,9,3,4,3,9,1,7,6,5,9,0,5,9,9
%N A198136 Decimal expansion of least x having 2*x^2-4x=-3*cos(x).
%C A198136 See A197737 for a guide to related sequences. The Mathematica program includes a graph.
%e A198136 least x: 0.85876971369761442119310432181053308611...
%e A198136 greatest x: 2.4766169740668170810192726417322477...
%t A198136 a = 2; b = -4; c = -3;
%t A198136 f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
%t A198136 Plot[{f[x], g[x]}, {x, -1, 3}]
%t A198136 r1 = x /. FindRoot[f[x] == g[x], {x, .85, .86}, WorkingPrecision -> 110]
%t A198136 RealDigits[r1] (* A198136 *)
%t A198136 r2 = x /. FindRoot[f[x] == g[x], {x, 2.4, 2.5}, WorkingPrecision -> 110]
%t A198136 RealDigits[r2] (* A198137 *)
%Y A198136 Cf. A197737.
%K A198136 nonn,cons
%O A198136 0,1
%A A198136 _Clark Kimberling_, Oct 22 2011