A198137 Decimal expansion of greatest x having 2*x^2-4x=-3*cos(x).
2, 4, 7, 6, 6, 1, 6, 9, 7, 4, 0, 6, 6, 8, 1, 7, 0, 8, 1, 0, 1, 9, 2, 7, 2, 6, 4, 1, 7, 3, 2, 2, 4, 7, 7, 4, 8, 4, 0, 2, 1, 0, 1, 7, 7, 8, 4, 7, 1, 8, 8, 6, 3, 1, 2, 1, 4, 1, 4, 7, 7, 7, 8, 9, 2, 1, 6, 0, 7, 4, 0, 2, 1, 6, 0, 6, 7, 7, 5, 5, 2, 1, 6, 4, 6, 7, 3, 7, 0, 4, 4, 9, 7, 2, 1, 9, 4, 1, 4
Offset: 1
Examples
least x: 0.85876971369761442119310432181053308611... greatest x: 2.4766169740668170810192726417322477...
Crossrefs
Cf. A197737.
Programs
-
Mathematica
a = 2; b = -4; c = -3; f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x] Plot[{f[x], g[x]}, {x, -1, 3}] r1 = x /. FindRoot[f[x] == g[x], {x, .85, .86}, WorkingPrecision -> 110] RealDigits[r1] (* A198136 *) r2 = x /. FindRoot[f[x] == g[x], {x, 2.4, 2.5}, WorkingPrecision -> 110] RealDigits[r2] (* A198137 *)
Comments