This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198161 #22 Nov 02 2014 02:07:18 %S A198161 4142135623,8872420969,9698078569,7537694807,7973799073,7846210703, %T A198161 2644121497,9935831413,6592750559,7010955997,1472851741,5251407989, %U A198161 2533965463,5339654633,6152583523,1525835239,3950547457,5750287759,5996172983,4084988471,6668713013 %N A198161 Primes from merging of 10 successive digits in decimal expansion of sqrt(2). %C A198161 Leading zeros are not permitted, so each term is 10 digits in length. %H A198161 Vincenzo Librandi, <a href="/A198161/b198161.txt">Table of n, a(n) for n = 1..1000</a> %t A198161 With[{len=10},Select[FromDigits/@Partition[RealDigits[Sqrt[2],10,1000][[1]],len,1],IntegerLength[#]==len&&PrimeQ[#]&]] %o A198161 (PARI) A198161(n, x=sqrt(2), m=10, silent=0)={m=10^m; for(k=1, default(realprecision), (isprime(p=x\.1^k%m)&&p*10>m)||next; silent||print1(p", "); n--||return(p))} \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use e.g. \p999 to set precision to 999 digits. - _M. F. Hasler_, Nov 02 2014 %Y A198161 For sqrt(2), see also A198162, A198163, A198164, A198165,A198166, A198167, A198168, A198169, A198161 (this sequence). %Y A198161 For e, see A104843, A104844, A104845, A104846, A104847, A104848, A104849, A104850, A104851. %Y A198161 For Pi, see A198175, A198170, A104824, A104825, A104826, A198171, A198172, A198173, A198174. %Y A198161 For the Golden Ratio, see A198177, A103773, A103789, A103793, A103808, A103809, A103810, A103811, A103812. %Y A198161 For the Euler-Mascheroni constant gamma, see A198776, A198777, A198778, A198779, A198780, A198781, A198782, A198783, A198784. %K A198161 nonn,base %O A198161 1,1 %A A198161 _Harvey P. Dale_, Oct 21 2011