cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198161 Primes from merging of 10 successive digits in decimal expansion of sqrt(2).

This page as a plain text file.
%I A198161 #22 Nov 02 2014 02:07:18
%S A198161 4142135623,8872420969,9698078569,7537694807,7973799073,7846210703,
%T A198161 2644121497,9935831413,6592750559,7010955997,1472851741,5251407989,
%U A198161 2533965463,5339654633,6152583523,1525835239,3950547457,5750287759,5996172983,4084988471,6668713013
%N A198161 Primes from merging of 10 successive digits in decimal expansion of sqrt(2).
%C A198161 Leading zeros are not permitted, so each term is 10 digits in length.
%H A198161 Vincenzo Librandi, <a href="/A198161/b198161.txt">Table of n, a(n) for n = 1..1000</a>
%t A198161 With[{len=10},Select[FromDigits/@Partition[RealDigits[Sqrt[2],10,1000][[1]],len,1],IntegerLength[#]==len&&PrimeQ[#]&]]
%o A198161 (PARI) A198161(n, x=sqrt(2), m=10, silent=0)={m=10^m; for(k=1, default(realprecision), (isprime(p=x\.1^k%m)&&p*10>m)||next; silent||print1(p", "); n--||return(p))} \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use e.g. \p999 to set precision to 999 digits. - _M. F. Hasler_, Nov 02 2014
%Y A198161 For sqrt(2), see also A198162, A198163, A198164, A198165,A198166, A198167, A198168, A198169, A198161 (this sequence).
%Y A198161 For e, see A104843, A104844, A104845, A104846, A104847, A104848, A104849, A104850, A104851.
%Y A198161 For Pi, see A198175, A198170, A104824, A104825, A104826, A198171, A198172, A198173, A198174.
%Y A198161 For the Golden Ratio, see A198177, A103773, A103789, A103793, A103808, A103809, A103810, A103811, A103812.
%Y A198161 For the Euler-Mascheroni constant gamma, see A198776, A198777, A198778, A198779, A198780, A198781, A198782, A198783, A198784.
%K A198161 nonn,base
%O A198161 1,1
%A A198161 _Harvey P. Dale_, Oct 21 2011