cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198174 Primes from merging of 10 successive digits in decimal expansion of Pi, in the order of appearance.

This page as a plain text file.
%I A198174 #22 Apr 10 2021 02:06:25
%S A198174 5926535897,4197169399,1693993751,7510582097,4825342117,5822317253,
%T A198174 2841027019,8521105559,8954930381,4756482337,2712019091,5432664821,
%U A198174 3266482133,6072602491,5588174881,8815209209,6282925409,2540917153,5903600113,8204665213,3841469519
%N A198174 Primes from merging of 10 successive digits in decimal expansion of Pi, in the order of appearance.
%C A198174 Leading zeros are not permitted, so each term is 10 digits in length.
%C A198174 See A104830 for the variant without this restriction. - _M. F. Hasler_, Nov 01 2014
%H A198174 Vincenzo Librandi, <a href="/A198174/b198174.txt">Table of n, a(n) for n = 1..1000</a>
%t A198174 With[{len=10},Select[FromDigits/@Partition[RealDigits[Pi,10,1000][[1]], len,1],IntegerLength[#]==len&&PrimeQ[#]&]]
%o A198174 (PARI) A198174(n, x=Pi, m=10, silent=0)={m=10^m; for(k=1, default(realprecision), (isprime(p=x\.1^k%m)&&p*10>m)||next; silent||print1(p", "); n--||return(p))} \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use e.g. \p999 to set precision to 999 digits. - _M. F. Hasler_, Nov 01 2014
%Y A198174 Cf., for Pi: A198175, A198170, A104824, A104825, A104826, A198171, A198172, A198173, A198174 (this) and A104830 (a variant).
%Y A198174 Cf., for sqrt(2): A198162, A198163, A198164, A198165,A198166, A198167, A198168, A198169, A198161.
%Y A198174 Cf., for e: A104843, A104844, A104845, A104846, A104847, A104848, A104849, A104850, A104851.
%Y A198174 Cf., for the Golden Ratio: A198177, A103773, A103789, A103793, A103808, A103809, A103810, A103811, A103812.
%Y A198174 Cf., for the Euler-Mascheroni constant gamma: A198776, A198777, A198778, A198779, A198780, A198781, A198782, A198783, A198784.
%K A198174 nonn,base
%O A198174 1,1
%A A198174 _Harvey P. Dale_, Oct 21 2011