This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198193 #27 Mar 13 2021 23:43:13 %S A198193 0,1,2,5,4,8,11,18,8,15,18,28,23,35,39,54,16,30,33,50,38,57,61,83,47, %T A198193 70,74,100,81,109,114,145,32,61,64,96,69,103,107,144,78,116,120,161, %U A198193 127,170,175,221,95,141,145,194,152,203,208,262,165,220,225,283 %N A198193 Replace 2^k in the binary representation of n with n+(k-L) where L = floor(log(n)/log(2)). %C A198193 That is, if n = 2^a + 2^b + 2^c + ... then a(n) = (n+(a-L)) + (n+(b-L)) + (n+(c-L)) + ...). %F A198193 Let L = A000523(n), then a(n) = (n-L)*A000120(n) + A073642(n). %e A198193 a(4) = (4+(2-2)) = 4 because int(log(4)/log(2)) = 2 and 4 = 2^2. %e A198193 a(6) = (6+(2-2)) + (6+(1-2)) = 11 because int(log(6)/log(2)) = 2 and 6 = 2^2 + 2^1. %p A198193 read("transforms") : %p A198193 A198193 := proc(n) %p A198193 (n-A000523(n))*wt(n)+A073642(n) ; %p A198193 end proc: %p A198193 seq(A198193(n),n=0..20) ; # _R. J. Mathar_, Nov 17 2011 %t A198193 Table[b = Reverse[IntegerDigits[n, 2]]; L = Length[b] - 1; Sum[b[[k]] (n + k - 1 - L), {k, Length[b]}], {n, 0, 59}] (* _T. D. Noe_, Nov 01 2011 *) %o A198193 (MATLAB) %o A198193 % n is number of terms to be computed, b is the base. The examples all use b=2: %o A198193 function [V] = revAddition(n,b) %o A198193 for i = 0:n %o A198193 k = i; %o A198193 if (i > 0) %o A198193 l = floor(log(i)/log(b)); %o A198193 end %o A198193 s = 0; %o A198193 while(k ~= 0) %o A198193 if ((i-l) >= 0) %o A198193 s = s + mod(k,b)*(i-l); %o A198193 end %o A198193 l = l - 1; %o A198193 k = (k - mod(k,b))/b; %o A198193 end %o A198193 V(i+1) = s; %o A198193 end %o A198193 end %o A198193 (Python) %o A198193 def A198193(n): return sum((n-i)*int(j) for i,j in enumerate(bin(n)[2:])) # _Chai Wah Wu_, Mar 13 2021 %Y A198193 Cf. A000120, A073642, A198192. %K A198193 nonn,base %O A198193 0,3 %A A198193 _Brian Reed_, Oct 26 2011