This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198230 #6 Feb 07 2025 16:44:05 %S A198230 1,1,2,6,9,9,6,5,9,6,1,1,1,3,9,9,6,5,8,3,4,5,2,3,7,3,8,4,3,2,5,4,0,4, %T A198230 8,5,4,9,3,7,7,7,1,3,8,6,4,4,6,8,9,1,7,0,7,6,6,3,8,2,1,6,3,8,9,7,3,2, %U A198230 5,0,6,1,3,0,0,6,9,5,4,3,3,5,9,8,1,1,2,2,2,6,6,1,7,3,1,2,1,7,5 %N A198230 Decimal expansion of least x having 3*x^2+3x=cos(x). %C A198230 See A197737 for a guide to related sequences. The Mathematica program includes a graph. %e A198230 least x: -1.126996596111399658345237384325404854... %e A198230 greatest x: 0.2565849342235694401504579474990935... %t A198230 a = 3; b = 3; c = 1; %t A198230 f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x] %t A198230 Plot[{f[x], g[x]}, {x, -2, 1}] %t A198230 r1 = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110] %t A198230 RealDigits[r1] (* A198230 *) %t A198230 r2 = x /. FindRoot[f[x] == g[x], {x, .25, .26}, WorkingPrecision -> 110] %t A198230 RealDigits[r2] (* A198231 *) %Y A198230 Cf. A197737. %K A198230 nonn,cons %O A198230 1,3 %A A198230 _Clark Kimberling_, Oct 23 2011