cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198233 Decimal expansion of greatest x having 3*x^2+3x=2*cos(x).

This page as a plain text file.
%I A198233 #6 Feb 07 2025 16:44:05
%S A198233 4,2,5,8,1,5,7,1,0,7,4,8,3,1,6,9,8,4,5,6,8,9,2,2,3,2,1,6,3,4,1,4,8,0,
%T A198233 8,7,0,5,3,8,5,1,4,4,7,8,5,9,6,2,9,9,8,0,0,1,1,5,3,5,2,9,4,3,8,6,2,1,
%U A198233 4,1,1,7,9,7,6,1,3,3,1,6,0,9,1,4,5,3,3,8,4,6,5,8,4,5,7,1,3,3,3
%N A198233 Decimal expansion of greatest x having 3*x^2+3x=2*cos(x).
%C A198233 See A197737 for a guide to related sequences. The Mathematica program includes a graph.
%e A198233 least x: -1.200777278517391290663654587682671...
%e A198233 greatest x: 0.4258157107483169845689223216341480870...
%t A198233 a = 3; b = 3; c = 2;
%t A198233 f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
%t A198233 Plot[{f[x], g[x]}, {x, -2, 1}]
%t A198233 r1 = x /. FindRoot[f[x] == g[x], {x, -1.3, -1.2}, WorkingPrecision -> 110]
%t A198233 RealDigits[r1](* A198232 *)
%t A198233 r2 = x /. FindRoot[f[x] == g[x], {x, .42, .43}, WorkingPrecision -> 110]
%t A198233 RealDigits[r2](* A198233 *)
%Y A198233 Cf. A197737.
%K A198233 nonn,cons
%O A198233 0,1
%A A198233 _Clark Kimberling_, Oct 23 2011