This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198235 #7 Feb 07 2025 16:44:05 %S A198235 6,4,6,4,3,5,5,6,7,5,2,7,7,2,2,5,8,8,3,7,9,1,3,3,8,2,8,1,0,8,7,4,3,8, %T A198235 8,9,3,9,7,9,1,9,1,6,8,5,7,2,7,9,8,9,6,7,9,8,9,0,5,4,7,6,1,3,1,2,9,2, %U A198235 5,5,6,6,3,6,3,9,0,5,4,5,4,8,0,5,8,4,8,6,8,1,2,8,3,7,0,5,9,3,8 %N A198235 Decimal expansion of greatest x having 3*x^2+3x=4*cos(x). %C A198235 See A197737 for a guide to related sequences. The Mathematica program includes a graph. %e A198235 least x: -1.28838923732282692044695376198415263654... %e A198235 greatest x: 0.646435567527722588379133828108743889... %t A198235 a = 3; b = 3; c = 4; %t A198235 f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x] %t A198235 Plot[{f[x], g[x]}, {x, -2, 1}] %t A198235 r1 = x /. FindRoot[f[x] == g[x], {x, -1.3, -1.2}, WorkingPrecision -> 110] %t A198235 RealDigits[r1](* A198234 *) %t A198235 r2 = x /. FindRoot[f[x] == g[x], {x, .64, .65}, WorkingPrecision -> 110] %t A198235 RealDigits[r2](* A198235 *) %Y A198235 Cf. A197737 %K A198235 nonn,cons %O A198235 0,1 %A A198235 _Clark Kimberling_, Oct 23 2011