This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198298 #41 Dec 23 2024 14:53:42 %S A198298 3205486917,3207154869,4063297185,4063792185,4230567819,4230915678, %T A198298 4297630518,4297631805,5042976318,5063297184,5079246318,5093271486, %U A198298 5094236718,5148609327,5180429763,5180792463,5180942367,5184063297,5420796318 %N A198298 Pandigital numbers (A050278) with each product of adjacent digits visible as a substring of the digits. %C A198298 There are 58 terms. %H A198298 Jason Kimberley, <a href="/A198298/b198298.txt">Table of n, a(n) for n = 1..58</a> (complete sequence) %H A198298 Eric Angelini, <a href="http://www.cetteadressecomportecinquantesignes.com/DixChiffres.htm">10 different digits, 9 products</a> %H A198298 Eric Angelini, <a href="/A198298/a198298.pdf">10 different digits, 9 products</a> [Cached copy, with permission] %H A198298 Eric Angelini, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2012-January/016213.html">10 different digits, 9 products</a>, Posting to Seqfan List, Jan 03 2012 %e A198298 5x4 ("20") is a substring of 5420976318, as are 4x2 ("8"), 2x0 ("0"), 0x9 ("0"), 9x7 ("63"), 7x6 ("42"), 6x3 ("18"), 3x1 ("3") and 1x8 ("8"). %e A198298 4297631805 is also a member (4*2="8"; 2*9="18"; 9*7="63"; 7*6="42"; 6*3="18"; 3*1="3"; 1*8="8"; 8*0="0"; 0*5="0"). %o A198298 (Python) %o A198298 from itertools import combinations, permutations %o A198298 def agen(): %o A198298 c = 0 %o A198298 digits = list("0123456789") %o A198298 for f in digits[1:]: %o A198298 rest = digits[:] %o A198298 rest.remove(f) %o A198298 for p in permutations(rest): %o A198298 t = (f, ) + p %o A198298 s = "".join(t) %o A198298 if all(str(int(t[i])*int(t[i+1])) in s for i in range(9)): %o A198298 yield int(s) %o A198298 afull = list(agen()) %o A198298 print(afull) # _Michael S. Branicky_, Oct 03 2024 %Y A198298 Cf. A203569, A203566, A210013-A210020. %K A198298 nonn,base,easy,fini,full %O A198298 1,1 %A A198298 Eric Angelini and _Jason Kimberley_, Jan 03 2012