cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198300 Square array M(k,g), read by antidiagonals, of the Moore lower bound on the order of a (k,g)-cage.

This page as a plain text file.
%I A198300 #49 Sep 08 2022 08:45:59
%S A198300 3,4,4,5,6,5,6,8,10,6,7,10,17,14,7,8,12,26,26,22,8,9,14,37,42,53,30,9,
%T A198300 10,16,50,62,106,80,46,10,11,18,65,86,187,170,161,62,11,12,20,82,114,
%U A198300 302,312,426,242,94,12,13,22,101,146,457,518,937,682,485,126,13
%N A198300 Square array M(k,g), read by antidiagonals, of the Moore lower bound on the order of a (k,g)-cage.
%C A198300 k >= 2; g >= 3.
%C A198300 The base k-1 reading of the base 10 string of A094626(g).
%C A198300 Exoo and Jajcay Theorem 1: M(k,g) <= A054760(k,g) with equality if and only if: k = 2 and g >= 3; g = 3 and k >= 2; g = 4 and k >= 2; g = 5 and k = 2, 3, 7 or possibly 57; or g = 6, 8, or 12, and there exists a symmetric generalized n-gon of order k - 1.
%D A198300 E. Bannai and T. Ito, On finite Moore graphs, J. Fac. Sci. Tokyo, Sect. 1A, 20 (1973) 191-208.
%D A198300 R. M. Damerell, On Moore graphs, Proc. Cambridge Phil. Soc. 74 (1973) 227-236.
%H A198300 Jason Kimberley, <a href="/A198300/b198300.txt">Table of n, a(n) for n = 1..20100 (k+g = 5..204)</a>
%H A198300 Jason Kimberley, <a href="/A198300/a198300.txt">Table of n, k+g, k, g, M(k,g)=a(n) for k+g = 5..204 (n = 1..20100)</a>
%H A198300 G. Exoo and R. Jajcay, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS16">Dynamic cage survey</a>, Electr. J. Combin. (2008, 2011).
%H A198300 Gordon Royle, <a href="http://staffhome.ecm.uwa.edu.au/~00013890/remote/cages/allcages.html">Cages of higher valency</a>
%F A198300 M(k,2i) = 2 sum_{j=0}^{i-1}(k-1)^j =  string "2"^i read in base k-1.
%F A198300 M(k,2i+1) = (k-1)^i +  2 sum_{j=0}^{i-1}(k-1)^j = string "1"*"2"^i read in base k-1.
%F A198300 Recurrence:
%F A198300 M(k,3) = k + 1,
%F A198300 M(k,2i) = M(k,2i-1) + (k-1)^(i-1),
%F A198300 M(k,2i+1) = M(k,2i) + (k-1)^i.
%e A198300 This is the table formed from the antidiagonals for k+g = 5..20:
%e A198300 3   4   5   6    7    8    9     10    11    12    13    14    15   16  17 18
%e A198300 4   6  10  14   22   30    46    62    94   126   190   254   382  510 766
%e A198300 5   8  17  26   53   80   161   242   485   728  1457  2186  4373 6560
%e A198300 6  10  26  42  106  170   426   682  1706  2730  6826 10922 27306
%e A198300 7  12  37  62  187  312   937  1562  4687  7812 23437 39062
%e A198300 8  14  50  86  302  518  1814  3110 10886 18662 65318
%e A198300 9  16  65 114  457  800  3201  5602 22409 39216
%e A198300 10 18  82 146  658 1170  5266  9362 42130
%e A198300 11 20 101 182  911 1640  8201 14762
%e A198300 12 22 122 222 1222 2222 12222
%e A198300 13 24 145 266 1597 2928
%e A198300 14 26 170 314 2042
%e A198300 15 28 197 366
%e A198300 16 30 226
%e A198300 17 32
%e A198300 18
%t A198300 Table[Function[g, FromDigits[#, k - 1] &@ IntegerDigits@ SeriesCoefficient[x (1 + x)/((1 - x) (1 - 10 x^2)), {x, 0, g}]][n - k + 3], {n, 2, 12}, {k, n, 2, -1}] // Flatten (* _Michael De Vlieger_, May 15 2017 *)
%o A198300 (Magma)
%o A198300 ExtendedStringToInt:=func<seq,base|&+[Integers()|seq[i]*base^(#seq-i):i in[1..#seq]]>;
%o A198300 M:=func<k,g|ExtendedStringToInt((IsOdd(g)select[1]else[])cat[2^^(g div 2)],k-1)>;
%o A198300 k_:=2;g_:=3;
%o A198300 anti:=func<kg|[M(kg-g,g):g in[g_..kg-k_]]>;
%o A198300 [anti(kg):kg in[5..15]];
%Y A198300 Moore lower bound on the order of a (k,g) cage: this sequence (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7), 2*A053698 (g=8), 2*A053699 (g=10), 2*A053700 (g=12), 2*A053716 (g=14), 2*A053716 (g=16), 2*A102909 (g=18), 2*A103623 (g=20), 2*A060885 (g=22), 2*A105067 (g=24), 2*A060887 (g=26), 2*A104376 (g=28), 2*A104682 (g=30), 2*A105312 (g=32).
%Y A198300 Cf. A054760 (the actual order of a (k,g)-cage).
%K A198300 nonn,tabl,easy,base
%O A198300 1,1
%A A198300 _Jason Kimberley_, Oct 27 2011