cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198303 Irregular triangle C(n,g) counting connected trivalent simple graphs on 2n vertices with girth exactly g.

This page as a plain text file.
%I A198303 #30 May 01 2014 02:39:59
%S A198303 1,1,1,3,2,13,5,1,63,20,2,399,101,8,1,3268,743,48,1,33496,7350,450,5,
%T A198303 412943,91763,5751,32,5883727,1344782,90553,385,94159721,22160335,
%U A198303 1612905,7573,1,1661723296,401278984,31297357,181224,3,31954666517
%N A198303 Irregular triangle C(n,g) counting connected trivalent simple graphs on 2n vertices with girth exactly g.
%C A198303 The first column is for girth exactly 3. The row length is incremented to g-2 when 2n reaches A000066(g).
%H A198303 F. C. Bussemaker, S. Cobeljic, L. M. Cvetkovic and J. J. Seidel, <a href="http://alexandria.tue.nl/repository/books/252909.pdf">Computer investigations of cubic graphs</a>, T.H.-Report 76-WSK-01, Technological University Eindhoven, Dept. Mathematics, 1976.
%H A198303 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_eq_g_index">Index of sequences counting connected k-regular simple graphs with girth exactly g</a>
%e A198303 1;
%e A198303 1, 1;
%e A198303 3, 2;
%e A198303 13, 5, 1;
%e A198303 63, 20, 2;
%e A198303 399, 101, 8, 1;
%e A198303 3268, 743, 48, 1;
%e A198303 33496, 7350, 450, 5;
%e A198303 412943, 91763, 5751, 32;
%e A198303 5883727, 1344782, 90553, 385;
%e A198303 94159721, 22160335, 1612905, 7573, 1;
%e A198303 1661723296, 401278984, 31297357, 181224, 3;
%e A198303 31954666517, 7885687604, 652159389, 4624480, 21;
%e A198303 663988090257, 166870266608, 14499780660, 122089998, 545;
%e A198303 14814445040728, 3781101495300, 342646718608, 3328899586, 30368;
%Y A198303 The sum of the n-th row of this sequence is A002851(n).
%Y A198303 Connected 3-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7).
%Y A198303 Connected 3-regular simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
%Y A198303 Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: this sequence (k=3), A184940 (k=4), A184950 (k=5), A184960 (k=6), A184970 (k=7), A184980 (k=8).
%K A198303 nonn,hard,tabf
%O A198303 2,4
%A A198303 _Jason Kimberley_, Nov 16 2011