This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198305 #10 Dec 09 2024 16:23:32 %S A198305 1,3,7,19,51,159,519,1867,7234,30243,135125,642307,3231047,17138845, %T A198305 95554662,558384955,3411049542,21730279218,144048688538,991665854999, %U A198305 7077433997172,52283785492733,399238054300828,3147127294177099,25579801627862301,214139186144996635 %N A198305 L.g.f.: Sum_{n>=1} (x^n/n) / Product_{d|n} (1 - n*x^d/d). %C A198305 Forms the logarithmic derivative of A198304. %e A198305 L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 19*x^4/4 + 51*x^5/5 + 159*x^6/6 +... %e A198305 such that, by definition: %e A198305 L(x) = x/(1-x) + (x^2/2)/((1-2*x)*(1-x^2)) + (x^3/3)/((1-3*x)*(1-x^3)) + (x^4/4)/((1-4*x)*(1-2*x^2)*(1-x^4)) + (x^5/5)/((1-5*x)*(1-x^5)) + (x^6/6)/((1-6*x)*(1-3*x^2)*(1-2*x^3)*(1-x^6)) +...+ (x^n/n)/Product_{d|n} (1-n*x^d/d) +... %e A198305 Exponentiation yields the g.f. of A198304: %e A198305 exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 21*x^5 + 54*x^6 + 148*x^7 +... %o A198305 (PARI) {a(n)=n*polcoeff(sum(m=1, n+1, x^m/m*exp(sumdiv(m, d, -log(1-m*x^d/d+x*O(x^n))))), n)} %Y A198305 Cf. A198304 (exp), A198299. %K A198305 nonn %O A198305 1,2 %A A198305 _Paul D. Hanna_, Jan 27 2012