cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198323 Matula-Goebel number of rooted trees that have only vertices of degree 1 and of maximal degree.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 19, 22, 25, 28, 31, 32, 33, 43, 53, 55, 62, 64, 93, 98, 121, 127, 128, 131, 152, 155, 172, 227, 254, 256, 311, 341, 343, 381, 383, 443, 512, 602, 635, 709, 719, 848, 908, 961, 1024, 1397, 1418, 1444, 1619, 1772, 1993, 2048, 2107, 2127, 2939, 3064, 3178, 3209, 3545, 3671, 3698, 3937
Offset: 1

Views

Author

Emeric Deutsch, Oct 29 2011

Keywords

Comments

The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.

Examples

			7 is in the sequence because the rooted tree with Matula-Goebel number 7 is the rooted tree Y, having 3 vertices of degree 1 and 1 vertex of degree 3.
15, 22, and 31 are in the sequence because the corresponding rooted trees are path trees on 6 vertices (with different roots); they have 2 vertices of degree 1 and 4 vertices of degree 2.
		

Crossrefs

Cf. A182907.

Formula

In A182907 one can find the generating polynomial g(n,x) of the vertices of the rooted tree having Matula-Goebel number n, according to degree. We look for those values of n for which the polynomial g(n) = g(n,x) has at most 2 terms.