cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A198326 Sum of lengths of all directed paths in the rooted tree having Matula-Goebel number n.

Original entry on oeis.org

0, 1, 4, 2, 10, 5, 7, 3, 8, 11, 20, 6, 13, 8, 14, 4, 16, 9, 10, 12, 11, 21, 19, 7, 20, 14, 12, 9, 23, 15, 35, 5, 24, 17, 17, 10, 16, 11, 17, 13, 26, 12, 19, 22, 18, 20, 29, 8, 14, 21, 20, 15, 13, 13, 30, 10, 14, 24, 30, 16, 22, 36, 15, 6, 23, 25, 22, 18, 23, 18, 26, 11, 25, 17, 24, 12, 27, 18, 38, 14, 16, 27, 36, 13, 26, 20, 27, 23, 19, 19
Offset: 1

Views

Author

Emeric Deutsch, Nov 02 2011

Keywords

Comments

A directed path of length k in a rooted tree is a sequence of k+1 vertices v[1], v[2], ..., v[k], v[k+1], such that v[j] is a child of v[j-1] for j = 2,3,...,k+1.
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
a(n)=Sum(k*A198325(n,k), k>=1).

Examples

			a(7)=7 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y, having 3 directed paths of length 1 (the edges) and 2 directed paths of length 2.
		

References

  • F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
  • I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
  • I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
  • D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.

Crossrefs

Cf. A198325.

Programs

  • Maple
    with(numtheory): P := proc (n) local r, s, E: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: E := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then 1+E(pi(n)) else E(r(n))+E(s(n)) end if end proc: if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(x*E(n)+x*P(pi(n)))) else sort(P(r(n))+P(s(n))) end if end proc: seq(subs(x = 1, diff(P(n), x)), n = 1 .. 90);
  • Mathematica
    r[n_] := FactorInteger[n][[1, 1]];
    s[n_] := n/r[n];
    e[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, 1 + e[PrimePi[n]], True,  e[r[n]] + e[s[n]]];
    P[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, x*e[n] + x*P[PrimePi[n]], True, P[r[n]] + P[s[n]]];
    a[n_] := D[P[n], x] /. x -> 1;
    Table[a[n], {n, 1, 90}] (* Jean-François Alcover, Jun 22 2024, after Maple code *)

Formula

In A198325 we give the recursive construction of the generating polynomials P(n)=P(n,x) of the directed paths of the rooted tree corresponding to the Matula-Goebel number n, with respect to length. a(n) is the derivative dP(n,x)/dx, evaluated at x=1.
Showing 1-1 of 1 results.