A198333 Irregular triangle read by rows: row n is the pruning partition of the rooted tree with Matula-Goebel number n.
1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 3, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 1, 4, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 2, 2, 2, 1, 2, 3, 2, 4, 1, 2, 2, 2, 1, 2, 3, 1, 3, 3, 2, 4, 1, 2, 3, 2, 2, 3, 2, 2, 2, 1, 5, 1, 2, 2, 2, 1, 2, 3, 2
Offset: 1
Examples
Row 7 is 1,3 because the rooted tree with Matula-Goebel number 7 is Y, having 3 vertices of degree 1 and after the first pruning we obtain the 1-vertex tree. The triangle starts: | Squared | Sum of squares (= A198334(n)). 1; 1; 1 2; 4; 4 1,2; 1,4; 5 1,2; 1,4; 5 2,2; 4,4; 8 2,2; 4,4; 8 1,3; 1,9; 10 1,3; 1,9; 10 1,2,2; 1,4,4; 9 - edited by _Antti Karttunen_, Mar 07 2017
References
- A. T. Balaban, Chemical graphs, Theoret. Chim. Acta (Berl.) 53, 355-375, 1979.
- R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, 2000.
Links
- F. Göbel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- Index entries for sequences related to Matula-Goebel numbers
Programs
-
Maple
with(numtheory): N := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc; if n = 1 then 1 elif bigomega(n) = 1 then 1+N(pi(n)) else N(r(n))+N(s(n))-1 end if end proc: a := proc (n) local r, s, b: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: b := proc (n) if n = 1 then 1 elif n = 2 then 1 elif bigomega(n) = 1 then ithprime(b(pi(n))) else b(r(n))*b(s(n)) end if end proc: if n = 1 then 1 elif bigomega(n) = 1 then b(pi(n)) else b(r(n))*b(s(n)) end if end proc: MS := proc (m) local A, i: A[m, 1] := m: for i from 2 while 1 < A[m, i-1] do A[m, i] := a(A[m, i-1]) end do: if A[m, i-2] = 2 then [seq(A[m, j], j = 1 .. i-2)] else [seq(A[m, j], j = 1 .. i-1)] end if end proc: PP := proc (n) local NVP, q: q := nops(MS(n)): NVP := map(N, MS(n)): NVP[q], seq(NVP[q-j]-NVP[q-j+1], j = 1 .. nops(NVP)-1) end proc: for n to 21 do PP(n) end do; # for the rooted tree with Matula-Goebel number n, N(n)=A061775(n) is the number of vertices, a(n) (=A198329(n)) is the Matula-Goebel number of the tree obtained after one pruning, MS(n) is the sequence of Matula-Goebel numbers of the trees obtained after 0,1,2,... prunings, PP(n) is the pruning partition, i.e. the number of vertices of degree 1 deleted at the successive prunings, given in reverse order.
Formula
A198329(n) is the Matula-Goebel number of the rooted tree obtained by removing from the rooted tree with Matula-Goebel number n the vertices of degree one, together with their incident edges. Repeated application of this yields the Matula-Goebel numbers of the trees obtained by successive prunings. Finding the number of vertices of these trees and taking differences lead to the pruning partition (see the Maple program and the explanation given there).
Comments