A212621 The overall first Zagreb index of the rooted tree having Matula-Goebel number n.
0, 2, 10, 10, 28, 28, 36, 36, 60, 60, 60, 80, 80, 80, 110, 112, 80, 158, 112, 146, 146, 110, 158, 222, 182, 158, 294, 196, 146, 266, 110, 320, 182, 146, 238, 414, 222, 222, 266, 370, 158, 354, 196, 238, 472, 294, 266, 594, 312, 424, 238, 354, 320, 744, 280, 494, 370, 266, 146, 660, 414, 182, 624
Offset: 1
Keywords
Examples
a(3)=10 because the rooted tree with Matula-Goebel number 3 is the path tree with 3 vertices R - A - B; the subtrees are R, A, B, RA, AB, and RAB with first Zagreb indices 0, 0, 0, 2, 2, and 6, respectively.
References
- D. Bonchev and N. Trinajstic, Overall molecular descriptors. 3. Overall Zagreb indices, SAR and QSAR in Environmental Research, 12, 2001, 213-236.
- F. Goebel, On a 1-1 correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Y-N. Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
Links
- E. Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288.
- Index entries for sequences related to Matula-Goebel numbers
Crossrefs
Programs
-
Maple
with(numtheory); Z1 := proc (n) local r, s; r := proc (n) options operator, arrow; op(1, factorset(n)) end proc; s := proc (n) options operator, arrow; n/r(n) end proc; if n = 1 then 0 elif bigomega(n) = 1 then Z1(pi(n))+2+2*bigomega(pi(n)) else Z1(r(n))+Z1(s(n))-bigomega(r(n))^2-bigomega(s(n))^2+bigomega(n)^2 end if end proc; m2union := proc (x, y) sort([op(x), op(y)]) end proc; with(numtheory); MRST := proc (n) local r, s; r := proc (n) options operator, arrow; op(1, factorset(n)) end proc; s := proc (n) options operator, arrow; n/r(n) end proc; if n = 1 then [1] elif bigomega(n) = 1 then [1, seq(ithprime(mrst[pi(n)][i]), i = 1 .. nops(mrst[pi(n)]))] else [seq(seq(mrst[r(n)][i]*mrst[s(n)][j], i = 1 .. nops(mrst[r(n)])), j = 1 .. nops(mrst[s(n)]))] end if end proc; MNRST := proc (n) local r, s; r := proc (n) options operator, arrow; op(1, factorset(n)) end proc; s := proc (n) options operator, arrow; n/r(n) end proc; if n = 1 then [] elif bigomega(n) = 1 then m2union(mrst[pi(n)], mnrst[pi(n)]) else m2union(mnrst[r(n)], mnrst[s(n)]) end if end proc; MST := proc (n) m2union(mrst[n], mnrst[n]) end proc; for n to 2000 do mrst[n] := MRST(n); mnrst[n] := MNRST(n); mst[n] := MST(n) end do; OZ1 := proc (n) options operator, arrow; add(Z1(MST(n)[j]), j = 1 .. nops(MST(n))) end proc; seq(OZ1(n), n = 1 .. 120); # MRST considers the subtrees that contain the root; MNRST considers the subtrees that do not contain the root; MST considers all subtrees.
Comments