This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198414 #22 Jan 28 2025 16:12:38 %S A198414 1,4,0,4,4,1,4,8,2,4,0,9,2,4,3,4,3,6,4,1,4,8,3,2,7,9,4,3,7,4,5,7,5,8, %T A198414 6,0,3,7,2,5,7,1,6,1,3,7,0,4,9,1,1,4,8,1,0,9,4,4,8,2,4,3,5,4,8,7,7,5, %U A198414 2,5,2,9,5,6,1,7,1,4,4,3,6,2,1,2,0,5,1,0,1,5,2,4,8,2,0,8,1,7,5 %N A198414 Decimal expansion of x > 0 satisfying x^2 = 2*sin(x). %C A198414 For many choices of a,b,c, there is a unique nonzero number x satisfying a*x^2+b*x=c*sin(x). %C A198414 Specifically, for a>0 and many choices of b and c, the curves y=ax^2+bx and y=c*sin(x) meet in a single point if and only if b=c, in which case the curves have a common tangent line, y=c*x. If b<c, the curves meet in quadrant 1; if b>c, they meet in quadrant 2. %C A198414 Guide to related sequences (with graphs included in Mathematica programs): %C A198414 a.....b.....c.....x %C A198414 1.....0.....1.....A124597 %C A198414 1.....0.....2.....A198414 %C A198414 1.....0.....3.....A198415 %C A198414 1.....0.....4.....A198416 %C A198414 1.....1.....2.....A198417 %C A198414 1.....1.....3.....A198418 %C A198414 1.....1.....4.....A198419 %C A198414 1.....2.....1.....A198424 %C A198414 1.....2.....3.....A198425 %C A198414 1.....2.....4.....A198426 %C A198414 1....-1.....1.....A198420 %C A198414 1....-1.....1.....A198420 %C A198414 1....-1.....2.....A198421 %C A198414 1....-1.....3.....A198422 %C A198414 1....-2.....1.....A198427 %C A198414 1....-2.....2.....A198428 %C A198414 1....-2.....3.....A198429 %C A198414 1....-2.....4.....A198430 %C A198414 1....-3.....1.....A198431 %C A198414 1....-3.....2.....A198432 %C A198414 1....-3.....3.....A198433 %C A198414 1....-3.....4.....A198488 %C A198414 1....-4.....1.....A198489 %C A198414 1....-4.....2.....A198490 %C A198414 1....-4.....3.....A198491 %C A198414 1....-4.....4.....A198492 %C A198414 2.....0.....1.....A198583 %C A198414 2.....0.....3.....A198605 %C A198414 2.....1.....2.....A198493 %C A198414 2.....1.....3.....A198494 %C A198414 2.....1.....4.....A198495 %C A198414 2.....2.....1.....A198496 %C A198414 2.....2.....3.....A198497 %C A198414 2.....3.....1.....A198608 %C A198414 2.....3.....2.....A198609 %C A198414 2.....3.....4.....A198610 %C A198414 2.....4.....1.....A198611 %C A198414 2.....4.....3.....A198612 %C A198414 2....-1.....1.....A198546 %C A198414 2....-1.....2.....A198547 %C A198414 2....-1.....3.....A198548 %C A198414 2....-1.....4.....A198549 %C A198414 2....-2.....3.....A198559 %C A198414 2....-3.....1.....A198566 %C A198414 2....-3.....2.....A198567 %C A198414 2....-3.....3.....A198568 %C A198414 2....-3.....4.....A198569 %C A198414 2....-4.....1.....A198577 %C A198414 2....-4.....3.....A198578 %C A198414 3.....0.....1.....A198501 %C A198414 3.....0.....2.....A198502 %C A198414 3.....1.....2.....A198498 %C A198414 3.....1.....3.....A198499 %C A198414 3.....1.....4.....A198500 %C A198414 3.....2.....1.....A198613 %C A198414 3.....2.....3.....A198614 %C A198414 3.....2.....4.....A198615 %C A198414 3.....3.....1.....A198616 %C A198414 3.....3.....2.....A198617 %C A198414 3.....3.....4.....A198618 %C A198414 3.....4.....1.....A198606 %C A198414 3.....4.....2.....A198607 %C A198414 3.....4.....3.....A198619 %C A198414 3....-1.....1.....A198550 %C A198414 3....-1.....2.....A198551 %C A198414 3....-1.....3.....A198552 %C A198414 3....-1.....4.....A198553 %C A198414 3....-2.....1.....A198560 %C A198414 3....-2.....2.....A198561 %C A198414 3....-2.....3.....A198562 %C A198414 3....-2.....4.....A198563 %C A198414 3....-3.....1.....A198570 %C A198414 3....-3.....2.....A198571 %C A198414 3....-3.....4.....A198572 %C A198414 3....-4.....1.....A198579 %C A198414 3....-4.....2.....A198580 %C A198414 3....-4.....3.....A198581 %C A198414 3....-4.....4.....A198582 %C A198414 4.....0.....1.....A198503 %C A198414 4.....0.....3.....A198504 %C A198414 4.....1.....2.....A198505 %C A198414 4.....1.....3.....A198506 %C A198414 4.....1.....4.....A198507 %C A198414 4.....2.....1.....A198539 %C A198414 4.....2.....3.....A198540 %C A198414 4.....3.....1.....A198541 %C A198414 4.....3.....2.....A198542 %C A198414 4.....3.....4.....A198543 %C A198414 4.....4.....1.....A198544 %C A198414 4.....4.....3.....A198545 %C A198414 4....-1.....1.....A198554 %C A198414 4....-1.....2.....A198555 %C A198414 4....-1.....3.....A198556 %C A198414 4....-1.....4.....A198557 %C A198414 4....-1.....1.....A198554 %C A198414 4....-2.....1.....A198564 %C A198414 4....-2.....3.....A198565 %C A198414 4....-3.....1.....A198573 %C A198414 4....-3.....2.....A198574 %C A198414 4....-3.....3.....A198575 %C A198414 4....-3.....4.....A198576 %C A198414 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f. %C A198414 For an example related to A198414, take f(x,u,v)=x^2+u*x-v*sin(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section. %H A198414 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A198414 1.4044148240924343641483279437457586037... %t A198414 (* Program 1: A198414 *) %t A198414 a = 1; b = 0; c = 2; %t A198414 f[x_] := a*x^2 + b*x; g[x_] := c*Sin[x] %t A198414 Plot[{f[x], g[x]}, {x, -1, 2}] %t A198414 r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.41}, WorkingPrecision -> 110] %t A198414 RealDigits[r] (* A198414 *) %t A198414 (* Program 2: an implicit surface of x^2+u*x=v*sin(x) *) %t A198414 f[{x_, u_, v_}] := x^2 + u*x - v*Sin[x]; %t A198414 t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .01, 6}]}, {u, .1, 100}, {v, u, 100}]; %t A198414 ListPlot3D[Flatten[t, 1]] %Y A198414 Cf. A197737. %K A198414 nonn,cons %O A198414 1,2 %A A198414 _Clark Kimberling_, Oct 24 2011 %E A198414 Edited by _Georg Fischer_, Aug 01 2021