cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198415 Decimal expansion of x>0 having x^2 = 3*sin(x).

This page as a plain text file.
%I A198415 #15 Feb 07 2025 16:44:05
%S A198415 1,7,2,2,1,2,5,1,1,2,0,7,6,7,2,3,5,9,9,4,1,5,1,4,0,0,7,3,4,7,1,7,7,4,
%T A198415 0,5,8,1,9,0,5,0,8,1,5,5,9,3,9,2,2,3,9,8,9,2,2,2,0,0,6,0,9,5,6,8,1,2,
%U A198415 9,5,0,8,4,2,3,2,6,5,7,5,2,2,9,7,6,8,7,4,6,9,2,0,5,2,4,9,5,6,8
%N A198415 Decimal expansion of x>0 having x^2 = 3*sin(x).
%C A198415 See A198414 for a guide to related sequences. The Mathematica program includes a graph.
%H A198415 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A198415 x=1.72212511207672359941514007347177405819...
%p A198415 Digits:= 140:
%p A198415 fsolve(x^2-3*sin(x), x=1..2);  # _Alois P. Heinz_, Jan 29 2025
%t A198415 a = 1; b = 0; c = 3;
%t A198415 f[x_] := a*x^2 + b*x; g[x_] := c*Sin[x]
%t A198415 Plot[{f[x], g[x]}, {x, -1, 2}]
%t A198415 r = x /. FindRoot[f[x] == g[x], {x, 1.7, 1.8}, WorkingPrecision -> 110]
%t A198415 RealDigits[r] (* A198415 *)
%o A198415 (PARI) solve(x=1,2, x^2-3*sin(x)) \\ _Charles R Greathouse IV_, Jan 28 2025
%Y A198415 Cf. A198414.
%K A198415 nonn,cons
%O A198415 1,2
%A A198415 _Clark Kimberling_, Oct 24 2011