This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198415 #15 Feb 07 2025 16:44:05 %S A198415 1,7,2,2,1,2,5,1,1,2,0,7,6,7,2,3,5,9,9,4,1,5,1,4,0,0,7,3,4,7,1,7,7,4, %T A198415 0,5,8,1,9,0,5,0,8,1,5,5,9,3,9,2,2,3,9,8,9,2,2,2,0,0,6,0,9,5,6,8,1,2, %U A198415 9,5,0,8,4,2,3,2,6,5,7,5,2,2,9,7,6,8,7,4,6,9,2,0,5,2,4,9,5,6,8 %N A198415 Decimal expansion of x>0 having x^2 = 3*sin(x). %C A198415 See A198414 for a guide to related sequences. The Mathematica program includes a graph. %H A198415 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A198415 x=1.72212511207672359941514007347177405819... %p A198415 Digits:= 140: %p A198415 fsolve(x^2-3*sin(x), x=1..2); # _Alois P. Heinz_, Jan 29 2025 %t A198415 a = 1; b = 0; c = 3; %t A198415 f[x_] := a*x^2 + b*x; g[x_] := c*Sin[x] %t A198415 Plot[{f[x], g[x]}, {x, -1, 2}] %t A198415 r = x /. FindRoot[f[x] == g[x], {x, 1.7, 1.8}, WorkingPrecision -> 110] %t A198415 RealDigits[r] (* A198415 *) %o A198415 (PARI) solve(x=1,2, x^2-3*sin(x)) \\ _Charles R Greathouse IV_, Jan 28 2025 %Y A198415 Cf. A198414. %K A198415 nonn,cons %O A198415 1,2 %A A198415 _Clark Kimberling_, Oct 24 2011