This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198457 #40 Feb 16 2025 21:24:52 %S A198457 3,6,7,4,4,6,5,16,17,6,10,12,7,8,11,7,30,31,8,18,20,9,14,17,9,48,49, %T A198457 10,12,16,10,28,30,11,70,71,12,18,22,12,40,42,13,16,21,13,30,33,13,96, %U A198457 97,14,25,29,14,54,56,15,22,27,15,40,43,15,126,127,16,20,26 %N A198457 Consider triples (a, b, c) where a <= b < c and (a^2+b^2-c^2)/(c-a-b) = 2, ordered by a and then b; sequence gives a, b and c values in that order. %C A198457 See A198453. %C A198457 Because either all sides or only one side of a Pythagorean (-+2)-triangle ABC is even their sum is always even. Thus csc(C) = -(a+b+c+k)/k is an integer. So ((a+2)^2 + (b+2)^2 - (c+2)^2)|(2*(a+2)*(b+2)) resp. (a^2 + b^2 - c^2)|(2*a*b). - _Ralf Steiner_, Sep 18 2019 %D A198457 A. H. Beiler, Recreations in the Theory of Numbers, Dover, New York, 1964, pp. 104-134. %H A198457 David A. Corneth, <a href="/A198457/b198457.txt">Table of n, a(n) for n = 1..9999</a> %H A198457 Ron Knott, <a href="https://r-knott.surrey.ac.uk/pythag/pythag.html">Pythagorean Triples and Online Calculators</a>. %e A198457 3*5 + 6*8 = 7*9; %e A198457 4*6 + 4*6 = 6*8; %e A198457 5*7 + 16*17 = 17*18; %e A198457 6*8 + 10*12 = 12*14; %e A198457 7*9 + 8*10 = 11*13; %e A198457 7*9 + 30*32 = 31*33. %o A198457 (True BASIC) %o A198457 input k %o A198457 for a = (abs(k)-k+4)/2 to 40 %o A198457 for b = a to (a^2+abs(k)*a+2)/2 %o A198457 let t = a*(a+k)+b*(b+k) %o A198457 let c = int((-k+(k^2+4*t)^.5)/2) %o A198457 if c*(c+k)=t then print a;b;c, %o A198457 next b %o A198457 print %o A198457 next a %o A198457 end %Y A198457 Cf. A103606, A198453-A198456, A198458-A198468. %K A198457 nonn,tabf %O A198457 1,1 %A A198457 _Charlie Marion_, Nov 09 2011 %E A198457 More terms from _David A. Corneth_, Sep 22 2019