This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198466 #8 Jul 07 2016 23:48:50 %S A198466 3,4,5,6,6,7,7,8,9,9,10,10,10,11,11,12,12,12,13,13,13,14,14,15,15,15, %T A198466 15,15,16,16,16,17,18,18,18,18,19,19,19,19,20,20,20,21,21,21,21,21,22, %U A198466 22,22,22,22,23,23,24,24,24,25,25,25,25,26,26,26,26,27,27,27,27,28,28,28,28,28 %N A198466 Consider triples a<=b<c where (a^2+b^2-c^2)/(c-a-b) = -1, ordered by a and then b; sequence gives a values. %C A198466 The definition can be generalized to define Pythagorean k-triples a<=b<c where (a^2+b^2-c^2)/(c-a-b)=k, or where for some integer k, a(a+k) + b(b+k) = c(c+k). See A198453 for more about Pythagorean k-triples. %D A198466 A. H. Beiler, Recreations in the Theory of Numbers, Dover, New York, 1964, pp. 104-134. %H A198466 Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html">Pythagorean Triples and Online Calculators</a> %e A198466 3*2 + 3*2 = 4*3 %e A198466 4*3 + 6*5 = 7*6 %e A198466 5*4 + 10*9 = 11*10 %e A198466 6*5 + 7*6 = 9*8 %e A198466 6*5 + 15*14 = 16*15 %o A198466 (True BASIC) %o A198466 input k %o A198466 for a = (abs(k)-k+4)/2 to 40 %o A198466 for b = a to (a^2+abs(k)*a+2)/2 %o A198466 let t = a*(a+k)+b*(b+k) %o A198466 let c =int((-k+ (k^2+4*t)^.5)/2) %o A198466 if c*(c+k)=t then print a; b; c, %o A198466 next b %o A198466 print %o A198466 next a %o A198466 end %Y A198466 Cf. A103606, A198453-A198469. %K A198466 nonn %O A198466 1,1 %A A198466 _Charlie Marion_, Dec 19 2011