This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198467 #8 Jul 07 2016 23:48:50 %S A198467 3,6,10,7,15,10,21,28,11,36,14,22,45,27,55,15,21,66,18,25,78,45,91,15, %T A198467 19,34,52,105,22,39,120,136,23,50,76,153,26,56,85,171,36,46,190,27,40, %U A198467 51,69,210,30,36,76,115,231,126,253,31,91,276,34,58,99,300 %N A198467 Consider triples a<=b<c where (a^2+b^2-c^2)/(c-a-b) = -1, ordered by a and then b; sequence gives b values. %C A198467 The definition can be generalized to define Pythagorean k-triples a<=b<c where (a^2+b^2-c^2)/(c-a-b)=k, or where for some integer k, a(a+k) + b(b+k) = c(c+k). See A198453 for more about Pythagorean k-triples. %D A198467 A. H. Beiler, Recreations in the Theory of Numbers, Dover, New York, 1964, pp. 104-134. %H A198467 Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html">Pythagorean Triples and Online Calculators</a> %e A198467 3*2 + 3*2 = 4*3 %e A198467 4*3 + 6*5 = 7*6 %e A198467 5*4 + 10*9 = 11*10 %e A198467 6*5 + 7*6 = 9*8 %e A198467 6*5 + 15*14 = 16*15 %o A198467 (True BASIC) %o A198467 input k %o A198467 for a = (abs(k)-k+4)/2 to 40 %o A198467 for b = a to (a^2+abs(k)*a+2)/2 %o A198467 let t = a*(a+k)+b*(b+k) %o A198467 let c =int((-k+ (k^2+4*t)^.5)/2) %o A198467 if c*(c+k)=t then print a; b; c, %o A198467 next b %o A198467 print %o A198467 next a %o A198467 end %Y A198467 Cf. A103606, A198453-A198469. %K A198467 nonn %O A198467 1,1 %A A198467 _Charlie Marion_, Dec 19 2011