This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198468 #8 Jul 07 2016 23:48:50 %S A198468 4,7,11,9,16,12,22,29,14,37,17,24,46,29,56,19,24,67,22,28,79,47,92,21, %T A198468 24,37,54,106,27,42,121,137,29,53,78,154,32,59,87,172,41,50,191,34,45, %U A198468 55,72,211,37,42,79,117,232,128,254,39,94,277,42,63,102,301 %N A198468 Consider triples a<=b<c where (a^2+b^2-c^2)/(c-a-b) = -1, ordered by a and then b; sequence gives c values. %C A198468 The definition can be generalized to define Pythagorean k-triples a<=b<c where (a^2+b^2-c^2)/(c-a-b)=k, or where for some integer k, a(a+k) + b(b+k) = c(c+k). See A198453 for more about Pythagorean k-triples. %D A198468 A. H. Beiler, Recreations in the Theory of Numbers, Dover, New York, 1964, pp. 104-134. %H A198468 Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html">Pythagorean Triples and Online Calculators</a> %e A198468 3*2 + 3*2 = 4*3 %e A198468 4*3 + 6*5 = 7*6 %e A198468 5*4 + 10*9 = 11*10 %e A198468 6*5 + 7*6 = 9*8 %e A198468 6*5 + 15*14 = 16*15 %o A198468 (True BASIC) %o A198468 input k %o A198468 for a = (abs(k)-k+4)/2 to 40 %o A198468 for b = a to (a^2+abs(k)*a+2)/2 %o A198468 let t = a*(a+k)+b*(b+k) %o A198468 let c =int((-k+ (k^2+4*t)^.5)/2) %o A198468 if c*(c+k)=t then print a; b; c, %o A198468 next b %o A198468 print %o A198468 next a %o A198468 end %Y A198468 Cf. A103606, A198453-A198469. %K A198468 nonn %O A198468 1,1 %A A198468 _Charlie Marion_, Dec 19 2011