cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198472 a(n)=q(n) if 4 | q(n)-2, and a(n)=q(n)/2 if 4 | q(n), where q(n) is the least practical number q>n with 2(n+1)-q practical.

Original entry on oeis.org

2, 2, 2, 6, 6, 4, 4, 6, 6, 8, 6, 18, 8, 18, 8, 18, 18, 10, 10, 12, 12, 14, 12, 30, 14, 30, 14, 30, 30, 16, 16, 18, 18, 20, 18, 42, 20, 42, 20, 42, 42, 54, 24, 24, 28, 54, 24, 28, 30, 54, 28, 32, 54, 28, 28, 30, 30, 32, 30, 66, 32, 66, 32, 66, 66, 78, 36, 36, 40, 78, 36, 40, 42, 78, 40, 44, 78, 40, 40, 42, 42, 44, 42, 90, 44, 90, 44, 90, 90, 52, 48, 48, 50, 50, 48, 52, 50, 54, 50, 56
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 27 2013

Keywords

Comments

Conjecture: If b(1)>=4 is an integer and b(k+1)=a(b(k)) for k=1,2,3,..., then b(n)=4 for some n>0.
This conjecture has the same flavor as the Collatz conjecture.

Examples

			a(20)=12 since 2(20+1)=24+18 with 24 and 18 both practical.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n]
    Pow[n_,i_]:=Pow[n,i]=Part[Part[f[n],i],1]^(Part[Part[f[n],i],2])
    Con[n_]:=Con[n]=Sum[If[Part[Part[f[n],s+1],1]<=DivisorSigma[1,Product[Pow[n,i],{i,1,s}]]+1,0,1],{s,1,Length[f[n]]-1}]
    pr[n_]:=pr[n]=n>0&&(n<3||Mod[n,2]+Con[n]==0)
    Do[Do[If[pr[2k]==True&&pr[2n+2-2k]==True,Print[n," ",2k/(1+Mod[k-1,2])];Goto[aa]],{k,Ceiling[(n+1)/2],n}];
    Label[aa];Continue,{n,1,100}]
  • PARI
    A198472(n) = forstep(q=n+++bittest(n,0),9e9,2, is_A005153(q) && is_A005153(2*n-q) && return(if(q%4,q,q\2))) \\ M. F. Hasler, Feb 27 2013