cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198524 Number of nX4 0..4 arrays with values 0..4 introduced in row major order and each element equal to no more than two horizontal and vertical neighbors.

This page as a plain text file.
%I A198524 #7 Jul 22 2025 12:59:19
%S A198524 15,3660,1877316,1084539825,634586561196,371815743708461,
%T A198524 217885196778717007,127683385189755792564,74824145653256981522691,
%U A198524 43847942678019724723096730,25695476991145191912238756667
%N A198524 Number of nX4 0..4 arrays with values 0..4 introduced in row major order and each element equal to no more than two horizontal and vertical neighbors.
%C A198524 Column 4 of A198528
%H A198524 R. H. Hardin, <a href="/A198524/b198524.txt">Table of n, a(n) for n = 1..202</a>
%F A198524 Empirical: a(n) = 635*a(n-1) -27578*a(n-2) -664895*a(n-3) +1075136*a(n-4) +521286483*a(n-5) +2748227094*a(n-6) -89204651105*a(n-7) -1168115845047*a(n-8) +9306591915990*a(n-9) +42304788343962*a(n-10) -261189926549682*a(n-11) +1315848767909456*a(n-12) +10954607284537534*a(n-13) -164731785495495987*a(n-14) -1080885231798070753*a(n-15) +6337772915200237725*a(n-16) +61973915198240765682*a(n-17) -174926704521799076140*a(n-18) -1769876739708372407462*a(n-19) +4724328200626189593230*a(n-20) +28925367737640459827048*a(n-21) -118508927361522008394407*a(n-22) -338291074875836070162743*a(n-23) +2078500757367505073417544*a(n-24) +3638638083258148122104563*a(n-25) -22533121425170101610868173*a(n-26) -35951981794618984423807318*a(n-27) +148059589343607187758481730*a(n-28) +304066001010912610265678504*a(n-29) -543286472115259646014984432*a(n-30) -1895168824990397488205106938*a(n-31) +515323596470817357216859317*a(n-32) +8036722529928241722905535107*a(n-33) +4658674126315217994389185485*a(n-34) -23520333887240276023055681024*a(n-35) -26120175729257847332834731016*a(n-36) +47521762151458452659065279664*a(n-37) +72064304438839106911387954831*a(n-38) -41729033682747124756817612725*a(n-39) -100063538582590874708501775431*a(n-40) -48216552248752824661323541828*a(n-41) -38770983476975500704603496326*a(n-42) +69199895034873870415739037968*a(n-43) +280771337691101112841981861706*a(n-44) +184733821531685058029799283792*a(n-45) -163201452658375838142652433035*a(n-46) -228964026785686523613364343973*a(n-47) -122774246713934304910904367423*a(n-48) -155053344320588456470407890304*a(n-49) -99882809264047288476808827105*a(n-50) +53324812803037826578664372675*a(n-51) +201914092248708392950874791566*a(n-52) +271765815346088672075249306279*a(n-53) +248628574921061669273781811996*a(n-54) +15423737680329534006814267885*a(n-55) -209896022729096662804319861750*a(n-56) -229186442003419348720426706257*a(n-57) -120121785521481771433649205077*a(n-58) -7735080728966165564636600190*a(n-59) +56375234411286047939465681488*a(n-60) +75221248919842898190277039920*a(n-61) +45192898133556559556449870260*a(n-62) +11821114684373823010990217928*a(n-63) -8505240726855879856600819878*a(n-64) -11910243027909373556607800604*a(n-65) -8302725927108486632616630296*a(n-66) -2836261104383247082262276560*a(n-67) +156712866661252193796331328*a(n-68) +927231923402821571908741120*a(n-69) +683876449064791153012081664*a(n-70) +262930466460133858491167744*a(n-71) +33590254005629207243431936*a(n-72) -30497588710990717377200128*a(n-73) -24091194787071846063800320*a(n-74) -9341232987121533770268672*a(n-75) -1964473495355240679997440*a(n-76) +68495837187683634905088*a(n-77) +232862864734779755986944*a(n-78) +109343325199815281737728*a(n-79) +32753423481532588228608*a(n-80) +7654527620812080414720*a(n-81) +1428195666470526517248*a(n-82) +202075648864951468032*a(n-83) +20776019874734407680*a(n-84) for n>85
%e A198524 Some solutions for n=5
%e A198524 ..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
%e A198524 ..0..1..1..0....0..1..1..0....0..1..1..0....0..1..1..0....0..1..1..0
%e A198524 ..0..0..0..0....0..0..0..0....1..0..0..0....2..0..0..0....1..0..0..0
%e A198524 ..2..3..2..4....2..1..3..1....2..0..3..4....3..0..1..1....1..0..1..2
%e A198524 ..1..0..4..1....0..0..4..3....3..0..4..2....2..3..1..4....2..1..3..3
%K A198524 nonn
%O A198524 1,1
%A A198524 _R. H. Hardin_ Oct 26 2011