This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198629 #11 May 11 2022 07:13:33 %S A198629 0,1,7,45,287,1821,11487,72045,449407,2789181,17230367,105996045, %T A198629 649630527,3968504541,24174772447,146908944045,890924667647, %U A198629 5393590283901,32604530573727,196853323284045,1187295678104767,7154833690143261 %N A198629 Alternating sums of powers of 1,2,...,6, divided by 3. %C A198629 For the e.g.f.s and o.g.f.s of such alternating power sums see A196847 (even case) and A196848 (odd case). %H A198629 Harvey P. Dale, <a href="/A198629/b198629.txt">Table of n, a(n) for n = 0..1000</a> %H A198629 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (21,-175,735,-1624,1764,-720). %F A198629 a(n)=sum(((-1)^j)*j^n,j=1..6)/3, n>=0. %F A198629 E.g.f.: sum(((-1)^j)*exp(j*x),j=1..6)/3 = exp(x)*(exp(6*x)-1)/(3*(exp(x)+1)). %F A198629 O.g.f.: sum(((-1)^j)/(1-j*x),j=1..6)/3 = x*(1-14*x+73*x^2-168*x^3+148*x^4)/ %F A198629 product(1-j*x,j=1..6). See A196847 for a formula for the coefficients of the numerator polynomial. %p A198629 A198629 := proc(n) %p A198629 (-3^n+4^n-1+2^n-5^n+6^n)/3 ; %p A198629 end proc: %p A198629 seq(A198629(n),n=0..20) ; # _R. J. Mathar_, May 11 2022 %t A198629 Table[Total[Times@@@Partition[Riffle[Range[6]^n,{-1,1},{2,-1,2}],2]]/3,{n,0,30}] (* _Harvey P. Dale_, Jul 17 2016 *) %Y A198629 Cf. A000225, A083323, 2*A053154, A198628. %K A198629 nonn,easy %O A198629 0,3 %A A198629 _Wolfdieter Lang_, Oct 28 2011