This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198630 #16 May 11 2022 07:15:23 %S A198630 1,4,28,208,1540,11344,83188,607408,4416580,31986064,230784148, %T A198630 1659338608,11892395620,84983496784,605698755508,4306834677808, %U A198630 30560156566660 %N A198630 Alternating sums of powers of 1,2,...,7. %C A198630 For the e.g.f.s and o.g.f.s of such alternating power sums see A196847 (even case) and A196848 (odd case). %H A198630 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (28,-322,1960,-6769,13132,-13068,5040). %F A198630 a(n)=sum(((-1)^(j+1))*j^n,j=1..7), n>=0. %F A198630 E.g.f.: sum(((-1)^(j+1))*exp(j*x),j=1..7)= exp(x)* %F A198630 (1+exp(7*x))/(1+exp(x)). %F A198630 O.g.f: sum(((-1)^(j+1))/(1-j*x),j=1..7) = (1-24*x+238*x^2-1248*x^3+3661*x^4-5736*x^5+3828*x^6)/ %F A198630 product(1-j*x,j=1..7). See A196848 for a formula for the coefficients of the numerator polynomial. %e A198630 a(2) = 1^2-2^2+3^2-4^2+5^2-6^2+7^2 = 28. %p A198630 A198630 := proc(n) %p A198630 3^n-4^n+1-2^n+5^n-6^n+7^n ; %p A198630 end proc: %p A198630 seq(A198630(n),n=0..20) ; # _R. J. Mathar_, May 11 2022 %o A198630 (PARI) a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 5040,-13068,13132,-6769,1960,-322,28]^n*[1;4;28;208;1540;11344;83188])[1,1] \\ _Charles R Greathouse IV_, Jul 06 2017 %Y A198630 Cf. A000225, A083323, 2*A053154, A198628, 3*A198629. %K A198630 nonn,easy %O A198630 0,2 %A A198630 _Wolfdieter Lang_, Oct 28 2011