cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198636 One half of total number of round trips, each of length 2n, on the graph P_6 (o-o-o-o-o-o).

This page as a plain text file.
%I A198636 #90 Feb 11 2018 10:49:09
%S A198636 3,5,13,38,117,370,1186,3827,12389,40169,130338,423065,1373466,
%T A198636 4459278,14478659,47011093,152642789,495626046,1609284589,5225309458,
%U A198636 16966465802,55089756851,178875298901,580804419201,1885860059450,6123349080945
%N A198636 One half of total number of round trips, each of length 2n, on the graph P_6 (o-o-o-o-o-o).
%C A198636 See the array and triangle A198632 for the general graph P_N case (there N is n and the length is l=2*k).
%H A198636 M. F. Hasler, <a href="/A198636/b198636.txt">Table of n, a(n) for n = 0..499</a>
%H A198636 S. Barbero, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Barbero/barbero15.html">Dickson Polynomials, Chebyshev Polynomials, and Some Conjectures of Jeffery</a>, Journal of Integer Sequences, 17 (2014), #14.3.8.
%H A198636 S. Barbero, U. Cerruti, N. Murru, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Barbero/barbero11.html">Identities Involving Zeros of Ramanujan and Shanks Cubic Polynomials</a>, J. Integer Seq., Vol. 16 (2013), Article 13.8.1, pp. 10-12.
%H A198636 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-6,1).
%F A198636 a(n) = w(6,2*n)/2, n>=0, with w(6,l) the total number of closed walks on the graph P_6 (the simple path with 6 points (vertices) and 5 lines (or edges)).
%F A198636 O.g.f. for w(6,l) (with zeros for odd l): y*(d/dy)S(6,y)/S(6,y) with y=1/x and Chebyshev S-polynomials (coefficients A049310). See also A198632 for a rewritten form.
%F A198636 O.g.f.: (3-10*x+6*x^2)/(1-5*x+6*x^2-x^3). - _Colin Barker_, Jan 02 2012
%F A198636 Conjecture: a(n) = 2^(2*n)*(sum_{k=1,2,3} (cos(k*Pi/7))^(2*n)). - _L. Edson Jeffery_, Jan 21 2012 (in fact this conjecture was recently proved in [Barbero, et al.])
%F A198636 a(n) = 7*(binomial(2n-1,n-1) + sum_{k = 1..floor(n/7)} binomial(2n,n-7k)) - 2^(2n-1). - _M. Lawrence Glasser_, Feb 20 2013
%F A198636 Let r,s,t be the roots of x^3 + x^2 - 2x - 1; then apparently a(n) = r^(2n) + s^(2n) + t^(2n). - _James R. Buddenhagen_, Nov 03 2013 [This is equivalent to the conjecture by _L. Edson Jeffery_.]
%F A198636 a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3). - _M. F. Hasler_, Nov 05 2013
%F A198636 G.f.: F(x) = (sum_{r=0..2} ((3-r)*(-1)^r*binomial(6-r,r))*x^r)/(sum_{s=0..3} ((-1)^s*binomial(6-s,s))*x^s). - _L. Edson Jeffery_, Nov 23 2013
%e A198636 With the graph P_6 as 1-2-3-4-5-6:
%e A198636 n=0: a(0)=3 because w(6,0)=6, the number of vertices.
%e A198636 n=2: a(2)=5 because the 10 round trips of length 2 are 121, 212, 232, 323, 343, 434, 454, 545, 565 and 656.
%t A198636 Table[7 (Binomial[2 n - 1, n - 1] + Sum[Binomial[2 n, n - 7 k], {k, Floor[n/7]}]) - 2^(2 n - 1) - (7/2) Boole[n == 0], {n, 0, 25}] (* _Michael De Vlieger_, Jul 17 2017 *)
%o A198636 (PARI) vec_A198636(Nmax)=Vec((3-10*x+6*x^2)/(1-5*x+6*x^2-x^3)+O(x^Nmax)) \\ Indices will start at 1 in this vector. - _M. F. Hasler_, Nov 03 2013
%o A198636 (PARI) {a(n) = if( n<0, n=-n; polcoeff( (3 - 12*x + 5*x^2) / (1 - 6*x + 5*x^2 - x^3) + x * O(x^n), n), polcoeff( (3 - 10*x + 6*x^2) / (1 - 5*x + 6*x^2 -x^3) + x * O(x^n), n))}; /* _Michael Somos_, Jul 17 2017 */
%Y A198636 Cf. A198632, A198633, A005248, A198635.
%K A198636 nonn,easy,walk
%O A198636 0,1
%A A198636 _Wolfdieter Lang_, Nov 03 2011