cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198656 Number of nX2 0..7 arrays with values 0..7 introduced in row major order and each element equal to at least one horizontal or vertical neighbor.

This page as a plain text file.
%I A198656 #7 Jul 22 2025 13:03:13
%S A198656 1,3,14,76,488,3521,28030,242883,2267306,22621072,239604079,
%T A198656 2677734762,31381450817,383270472363,4847901589642,63125725801101,
%U A198656 841517900517550,11429291342102135,157506922063918536,2195111769933116471
%N A198656 Number of nX2 0..7 arrays with values 0..7 introduced in row major order and each element equal to at least one horizontal or vertical neighbor.
%C A198656 Column 2 of A198661
%H A198656 R. H. Hardin, <a href="/A198656/b198656.txt">Table of n, a(n) for n = 1..200</a>
%F A198656 Empirical: a(n) = 50*a(n-1) -973*a(n-2) +8874*a(n-3) -29927*a(n-4) -92230*a(n-5) +939984*a(n-6) -1157338*a(n-7) -7025352*a(n-8) +14473974*a(n-9) +29278108*a(n-10) -54017762*a(n-11) -108264239*a(n-12) +78120984*a(n-13) +276328733*a(n-14) +56831952*a(n-15) -336850101*a(n-16) -307076936*a(n-17) +88644128*a(n-18) +275952224*a(n-19) +124163560*a(n-20) -45062112*a(n-21) -62248400*a(n-22) -20707200*a(n-23) -2210000*a(n-24)
%e A198656 Some solutions with all values 0 to 7 for n=8
%e A198656 ..0..0....0..0....0..1....0..0....0..0....0..1....0..1....0..1....0..0....0..0
%e A198656 ..1..1....1..2....0..1....1..1....1..1....0..1....0..1....0..1....1..1....1..2
%e A198656 ..2..2....1..2....2..3....2..2....2..2....2..2....2..2....2..2....2..2....1..2
%e A198656 ..3..3....3..4....2..3....3..3....3..3....3..3....3..4....3..3....3..4....3..3
%e A198656 ..4..5....3..4....4..5....4..4....4..4....4..5....3..4....4..4....3..4....4..4
%e A198656 ..4..5....5..6....4..5....5..6....5..5....4..5....5..5....5..5....5..6....5..6
%e A198656 ..6..7....5..6....6..7....5..6....6..6....6..7....6..7....6..6....5..6....5..6
%e A198656 ..6..7....7..7....6..7....7..7....7..7....6..7....6..7....7..7....7..7....7..7
%K A198656 nonn
%O A198656 1,2
%A A198656 _R. H. Hardin_ Oct 28 2011