This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198727 #12 Nov 16 2015 23:27:53 %S A198727 1,1,0,1,2,1,0,2,2,1,2,2,3,4,3,2,6,6,1,5,9,6,5,9,9,9,11,8,13,17,11,12, %T A198727 22,19,13,23,25,22,26,28,30,37,34,31,47,45,35,50,61,52,56,69,68,76,74, %U A198727 72,95,100,82,100,130,112,113,139,144,149,154,156,183 %N A198727 Number of partitions of n into distinct positive Loeschian numbers (cf. A003136). %H A198727 Reinhard Zumkeller, <a href="/A198727/b198727.txt">Table of n, a(n) for n = 0..1000</a> %e A198727 a(20) = #{19+1, 16+4, 16+3+1, 13+7, 13+4+3, 12+7+1, 12+4+3+1, 9+7+4, 9+7+3+1} = 9; %e A198727 a(21) = #{21, 16+4+1, 13+7+1, 13+4+3+1, 12+9, 9+7+4+1} = 6; %e A198727 a(22) = #{21+1, 19+3, 13+9, 12+9+1, 12+7+3} = 5. %o A198727 (Haskell) %o A198727 import Data.MemoCombinators (memo2, list, integral) %o A198727 a198727 n = a198727_list !! n %o A198727 a198727_list = f 0 [] $ tail a003136_list where %o A198727 f u vs ws'@(w:ws) | u < w = (p' vs u) : f (u + 1) vs ws' %o A198727 | otherwise = f u (vs ++ [w]) ws %o A198727 p' = memo2 (list integral) integral p %o A198727 p _ 0 = 1 %o A198727 p [] _ = 0 %o A198727 p (k:ks) m = if m < k then 0 else p' ks (m - k) + p' ks m %o A198727 -- _Reinhard Zumkeller_, Nov 16 2015, Oct 30 2011 %Y A198727 Cf. A003136, A198726. %K A198727 nonn %O A198727 0,5 %A A198727 _Reinhard Zumkeller_, Oct 30 2011