This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198755 #16 Jan 30 2025 16:18:53 %S A198755 1,3,2,5,6,2,2,5,1,8,1,4,7,5,3,6,6,2,3,4,8,3,2,2,9,0,2,9,3,8,7,9,8,7, %T A198755 4,4,3,3,0,4,5,4,6,7,2,5,6,5,7,6,6,4,9,5,2,6,2,7,4,0,1,8,5,3,2,0,0,8, %U A198755 9,5,0,6,1,6,5,9,3,0,2,4,6,5,0,3,4,1,1,0,9,7,5,9,7,7,5,7,5,6,7 %N A198755 Decimal expansion of x>0 satisfying x^2+cos(x)=2. %C A198755 For many choices of a,b,c, there is a unique x>0 satisfying a*x^2+b*cos(x)=c. %C A198755 Guide to related sequences, with graphs included in Mathematica programs: %C A198755 a.... b.... c..... x %C A198755 1.... 1.... 2..... A198755 %C A198755 1.... 1.... 3..... A198756 %C A198755 1.... 1.... 4..... A198757 %C A198755 1.... 2.... 3..... A198758 %C A198755 1.... 2.... 4..... A198811 %C A198755 1.... 3.... 3..... A198812 %C A198755 1.... 3.... 4..... A198813 %C A198755 1.... 4.... 3..... A198814 %C A198755 1.... 4.... 4..... A198815 %C A198755 1.... 1.... 0..... A125578 %C A198755 1... -1.... 1..... A198816 %C A198755 1... -1.... 2..... A198817 %C A198755 1... -1.... 3..... A198818 %C A198755 1... -1.... 4..... A198819 %C A198755 1... -2.... 1..... A198821 %C A198755 1... -2.... 2..... A198822 %C A198755 1... -2.... 3..... A198823 %C A198755 1... -2.... 4..... A198824 %C A198755 1... -2... -1..... A198825 %C A198755 1... -3.... 0..... A197807 %C A198755 1... -3.... 1..... A198826 %C A198755 1... -3.... 2..... A198828 %C A198755 1... -3.... 3..... A198829 %C A198755 1... -3.... 4..... A198830 %C A198755 1... -3... -1..... A198835 %C A198755 1... -3... -2..... A198836 %C A198755 1... -4.... 0..... A197808 %C A198755 1... -4.... 1..... A198838 %C A198755 1... -4.... 2..... A198839 %C A198755 1... -4.... 3..... A198840 %C A198755 1... -4.... 4..... A198841 %C A198755 1... -4... -1..... A198842 %C A198755 1... -4... -2..... A198843 %C A198755 1... -4... -3..... A198844 %C A198755 2.... 0.... 1..... A010503 %C A198755 2.... 0.... 3..... A115754 %C A198755 2.... 1.... 2..... A198820 %C A198755 2.... 1.... 3..... A198827 %C A198755 2.... 1.... 4..... A198837 %C A198755 2.... 2.... 3..... A198869 %C A198755 2.... 3.... 4..... A198870 %C A198755 2... -1.... 1..... A198871 %C A198755 2... -1.... 2..... A198872 %C A198755 2... -1.... 3..... A198873 %C A198755 2... -1.... 4..... A198874 %C A198755 2... -2... -1..... A198875 %C A198755 2... -2.... 3..... A198876 %C A198755 2... -3... -2..... A198877 %C A198755 2... -3... -1..... A198878 %C A198755 2... -3.... 1..... A198879 %C A198755 2... -3.... 2..... A198880 %C A198755 2... -3.... 3..... A198881 %C A198755 2... -3.... 4..... A198882 %C A198755 2... -4... -3..... A198883 %C A198755 2... -4... -1..... A198884 %C A198755 2... -4.... 1..... A198885 %C A198755 2... -4.... 3..... A198886 %C A198755 3.... 0.... 1..... A020760 %C A198755 3.... 1.... 2..... A198868 %C A198755 3.... 1.... 3..... A198917 %C A198755 3.... 1.... 4..... A198918 %C A198755 3.... 2.... 3..... A198919 %C A198755 3.... 2.... 4..... A198920 %C A198755 3.... 3.... 4..... A198921 %C A198755 3... -1.... 1..... A198922 %C A198755 3... -1.... 2..... A198924 %C A198755 3... -1.... 3..... A198925 %C A198755 3... -1.... 4..... A198926 %C A198755 3... -2... -1..... A198927 %C A198755 3... -2.... 1..... A198928 %C A198755 3... -2.... 2..... A198929 %C A198755 3... -2.... 3..... A198930 %C A198755 3... -2.... 4..... A198931 %C A198755 3... -3... -1..... A198932 %C A198755 3... -3.... 1..... A198933 %C A198755 3... -3.... 2..... A198934 %C A198755 3... -3.... 4..... A198935 %C A198755 3... -4... -3..... A198936 %C A198755 3... -4... -2..... A198937 %C A198755 3... -4... -1..... A198938 %C A198755 3... -4.... 1..... A198939 %C A198755 3... -4.... 2..... A198940 %C A198755 3... -4.... 3..... A198941 %C A198755 3... -4.... 4..... A198942 %C A198755 4.... 1.... 2..... A198923 %C A198755 4.... 1.... 3..... A198983 %C A198755 4.... 1.... 4..... A198984 %C A198755 4.... 2.... 3..... A198985 %C A198755 4.... 3.... 4..... A198986 %C A198755 4... -1.... 1..... A198987 %C A198755 4... -1.... 2..... A198988 %C A198755 4... -1.... 3..... A198989 %C A198755 4... -1.... 4..... A198990 %C A198755 4... -2... -1..... A198991 %C A198755 4... -2.... 1..... A198992 %C A198755 4... -2... -3..... A198993 %C A198755 4... -3... -2..... A198994 %C A198755 4... -3... -1..... A198995 %C A198755 4... -2.... 1..... A198996 %C A198755 4... -3.... 2..... A198997 %C A198755 4... -3.... 3..... A198998 %C A198755 4... -3.... 4..... A198999 %C A198755 4... -4... -3..... A199000 %C A198755 4... -4... -1..... A199001 %C A198755 4... -4.... 1..... A199002 %C A198755 4... -4.... 3..... A199003 %C A198755 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f. %C A198755 For an example related to A198755, take f(x,u,v)=x^2+u*cos(x)-v and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section. %H A198755 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A198755 1.32562251814753662348322902938798744330... %t A198755 (* Program 1: A198655 *) %t A198755 a = 1; b = 1; c = 2; %t A198755 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c %t A198755 Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] %t A198755 r = x /. FindRoot[f[x] == g[x], {x, 1.32, 1.33}, WorkingPrecision -> 110] %t A198755 RealDigits[r] (* A198755 *) %t A198755 (* Program 2: implicit surface of x^2+u*cos(x)=v *) %t A198755 f[{x_, u_, v_}] := x^2 + u*Cos[x] - v; %t A198755 t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 3}]}, {u, -5, 4}, {v, u, 20}]; %t A198755 ListPlot3D[Flatten[t, 1]] (* for A198755 *) %Y A198755 Cf. A197737, A198414. %K A198755 nonn,cons %O A198755 1,2 %A A198755 _Clark Kimberling_, Oct 30 2011