This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198802 #23 Apr 30 2024 03:24:13 %S A198802 1,0,18,36,918,5400,82800,801360,10907190,132053040,1802041668, %T A198802 24199809480,340640607384,4834708246368,70229958125184, %U A198802 1032223723667136,15391538570569590,231935110984687968,3531542904056225916,54244559313713885688,839979883121036697468 %N A198802 Number of closed paths of length n whose steps are 18th roots of unity, U_18(n). %C A198802 U_18(n), comment in article: For each m >= 1, the sequence (U_m(N)), N >= 0 is P-recursive but is not algebraic when m > 2. %H A198802 Andrew Howroyd, <a href="/A198802/b198802.txt">Table of n, a(n) for n = 0..200</a> %H A198802 Gilbert Labelle and Annie Lacasse, <a href="https://doi.org/10.46298/dmtcs.2937">Closed paths whose steps are roots of unity</a>, in FPSAC 2011, Reykjavik, Iceland DMTCS proc. AO, 2011, 599-610. %F A198802 E.g.f.: g(x)^3 where g(x) is the e.g.f. of A002898. %F A198802 a(n) ~ 2^(n-3) * 3^(2*n + 9/2) / (Pi^3 * n^3). - _Vaclav Kotesovec_, Apr 30 2024 %o A198802 (PARI) seq(n)={Vec(serlaplace(sum(k=0, n, if(k,2,1)*(x^k*besseli(k, 2*x + O(x^(n-k+1)))/k!)^3)^3))} \\ _Andrew Howroyd_, Nov 01 2018 %Y A198802 Cf. A002898, A198808. %K A198802 nonn %O A198802 0,3 %A A198802 _Simon Plouffe_, Oct 30 2011