cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198811 Decimal expansion of x>0 satisfying x^2+2*cos(x)=4.

This page as a plain text file.
%I A198811 #9 Feb 07 2025 16:44:05
%S A198811 2,3,1,3,5,8,9,3,4,9,0,4,8,4,8,7,9,2,2,4,4,5,3,0,4,1,3,3,6,6,6,6,7,2,
%T A198811 8,0,7,6,1,5,6,6,4,7,2,0,7,2,0,6,7,7,3,7,5,2,1,7,0,4,8,3,6,4,1,9,2,1,
%U A198811 9,6,8,8,7,1,5,5,4,2,7,3,4,2,5,0,0,0,1,1,5,7,7,6,3,7,2,3,4,8,9
%N A198811 Decimal expansion of x>0 satisfying x^2+2*cos(x)=4.
%C A198811 See A198755 for a guide to related sequences. The Mathematica program includes a graph.
%H A198811 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A198811 x=2.3135893490484879224453041336666...
%t A198811 a = 1; b = 2; c = 4;
%t A198811 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c
%t A198811 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
%t A198811 r = x /. FindRoot[f[x] == g[x], {x, 2.3, 2.4}, WorkingPrecision -> 110]
%t A198811 RealDigits[r] (* A198811 *)
%Y A198811 Cf. A198755.
%K A198811 nonn,cons
%O A198811 1,1
%A A198811 _Clark Kimberling_, Oct 30 2011