cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198817 Decimal expansion of x>0 satisfying x^2-cos(x)=2.

This page as a plain text file.
%I A198817 #8 Feb 07 2025 16:44:05
%S A198817 1,4,5,4,6,1,8,9,2,9,2,0,8,1,1,1,2,7,8,7,9,5,8,4,2,2,2,3,3,7,8,0,9,3,
%T A198817 2,9,1,0,4,3,2,4,7,9,6,7,5,8,6,4,2,5,8,2,7,5,9,7,3,1,8,4,8,7,1,9,5,3,
%U A198817 9,1,2,9,9,6,9,4,2,5,4,2,9,8,5,1,4,6,0,4,8,1,3,4,3,9,9,0,8,1,6
%N A198817 Decimal expansion of x>0 satisfying x^2-cos(x)=2.
%C A198817 See A198755 for a guide to related sequences. The Mathematica program includes a graph.
%H A198817 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A198817 1.45461892920811127879584222337809329104324...
%t A198817 a = 1; b = -1; c = 2;
%t A198817 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c
%t A198817 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
%t A198817 r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
%t A198817 RealDigits[r] (* A198817 *)
%Y A198817 Cf. A198755.
%K A198817 nonn,cons
%O A198817 1,2
%A A198817 _Clark Kimberling_, Oct 30 2011