cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198818 Decimal expansion of x>0 satisfying x^2-cos(x)=3.

This page as a plain text file.
%I A198818 #8 Feb 07 2025 16:44:05
%S A198818 1,6,9,5,7,0,5,0,9,9,0,8,3,0,6,6,8,0,6,1,5,7,4,9,1,2,9,9,6,4,4,3,9,7,
%T A198818 7,9,7,5,4,3,8,8,9,7,4,2,2,4,4,5,8,9,1,5,7,9,2,6,0,8,8,9,9,4,4,5,4,2,
%U A198818 8,9,0,4,4,4,7,7,2,1,8,5,3,9,1,2,0,8,1,3,4,5,0,2,5,5,7,2,5,9,4
%N A198818 Decimal expansion of x>0 satisfying x^2-cos(x)=3.
%C A198818 See A198755 for a guide to related sequences. The Mathematica program includes a graph.
%H A198818 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A198818 1.6957050990830668061574912996443977975438897422...
%t A198818 a = 1; b = -1; c = 3;
%t A198818 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c
%t A198818 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
%t A198818 r = x /.
%t A198818   FindRoot[f[x] == g[x], {x, 1.69, 1.7}, WorkingPrecision -> 110]
%t A198818 RealDigits[r] (* A198818 *)
%Y A198818 Cf. A198755.
%K A198818 nonn,cons
%O A198818 1,2
%A A198818 _Clark Kimberling_, Oct 30 2011