cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198834 Number of sequences of n coin flips that win on the last flip, if the sequence of flips ends with (0,1,1) or (1,1,1).

This page as a plain text file.
%I A198834 #38 Feb 19 2023 17:30:47
%S A198834 0,0,2,2,4,6,10,16,26,42,68,110,178,288,466,754,1220,1974,3194,5168,
%T A198834 8362,13530,21892,35422,57314,92736,150050,242786,392836,635622,
%U A198834 1028458,1664080,2692538,4356618,7049156,11405774,18454930,29860704,48315634,78176338
%N A198834 Number of sequences of n coin flips that win on the last flip, if the sequence of flips ends with (0,1,1) or (1,1,1).
%C A198834 If the sequence ends with (011) Abel wins; if it ends with (111) Kain wins.
%C A198834 Kain(n)=0 for n <> 3; Kain(3)=1.
%C A198834 Abel(n) = A128588(n-2) for n > 2.
%C A198834 a(n) = A006355(n-1) for n > 2.
%C A198834 Win probability for Abel: Sum_{n>=1} Abel(n)/2^n = 7/8.
%C A198834 Win probability for Kain: Kain(3)/8 = 1/8.
%C A198834 Mean length of the game: Sum_{n>=1} n*a(n)/2^n = 7.
%C A198834 Appears to be essentially the same as A163733, A118658, A055389. - _R. J. Mathar_, Oct 31 2011
%D A198834 A. Engel, Wahrscheinlichkeit und Statistik, Band 2, Klett, 1978, pages 25-26.
%H A198834 Vincenzo Librandi, <a href="/A198834/b198834.txt">Table of n, a(n) for n = 1..1000</a>
%H A198834 Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, Minghao Chen, <a href="https://doi.org/10.3934/era.2020057">Recursive sequences and Girard-Waring identities with applications in sequence transformation</a>, Electronic Research Archive (2020) Vol. 28, No. 2, 1049-1062.
%H A198834 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1).
%F A198834 a(n) = a(n-1) + a(n-2) for n > 3.
%F A198834 G.f.: 2*x^3/(1 - x - x^2).
%F A198834 a(n) = 2*A000045(n-2). - _R. J. Mathar_, Jan 11 2017
%F A198834 E.g.f.: 2 - 2*x + 2*exp(x/2)*(3*sqrt(5)*sinh(sqrt(5)*x/2) - 5*cosh(sqrt(5)*x/2))/5. - _Stefano Spezia_, Feb 19 2023
%e A198834 For n=6 the a(6)=6 solutions are (0,0,0,0,1,1), (1,0,0,0,1,1); (0,1,0,0,1,1), (1,1,0,0,1,1), (0,0,1,0,1,1), (1,0,1,0,1,1) all for Abel.
%p A198834 a(1):=0: a(2):=0: a(3):=2:
%p A198834 ml:=0.75: pot:=8:
%p A198834 for n from 4 to 100 do
%p A198834   pot:=2*pot:
%p A198834   a(n):=a(n-1)+a(n-2):
%p A198834   ml:=ml+n*a(n)/pot:
%p A198834 end do:
%p A198834 printf("%12.8f",ml);
%p A198834 seq(a(n),n=1..100);
%t A198834 Join[{0, 0}, Table[2*Fibonacci[n], {n, 70}]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 10 2012 *)
%t A198834 Join[{0},LinearRecurrence[{1,1},{0,2},50]] (* _Vincenzo Librandi_, Feb 19 2012 *)
%Y A198834 Cf. A006355, A055389, A118658, A128588, A163733.
%K A198834 nonn,easy
%O A198834 1,3
%A A198834 _Paul Weisenhorn_, Oct 30 2011