cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198863 Numbers whose squares are pandigital numbers with exactly two occurrences of each digit.

This page as a plain text file.
%I A198863 #33 Jun 25 2022 12:54:22
%S A198863 3164252736,3164326683,3164389113,3164391957,3164406057,3164416923,
%T A198863 3164421333,3164454864,3164466768,3164482974,3164528124,3164547114,
%U A198863 3164689392,3164695206,3164735277,3164770866,3164789766,3164863185,3164867118,3164907357,3165009693
%N A198863 Numbers whose squares are pandigital numbers with exactly two occurrences of each digit.
%C A198863 Later terms include: 4000171725, 4000183233, 4000198443, 4000203567.
%C A198863 Because the sum of the digits of a(n)^2 is 90, 9 divides a(n)^2. Hence, 3 divides a(n). - _T. D. Noe_, Nov 08 2011
%e A198863 4000171725^2 = 16001373829489475625.
%t A198863 Select[Range[3164250000, 3164450000], Union[DigitCount[#^2]] == {2} &] (* _Alonso del Arte_, Oct 31 2011 *)
%t A198863 t = {}; n = 3164211348; nMax = 9994386752; While[n <= nMax && Length[t] < 21, While[n <= nMax && Union[DigitCount[n^2]] != {2}, n = n + 3]; If[n <= nMax, AppendTo[t, n]; Print[n]; n = n + 3]]; t (* _T. D. Noe_, Nov 08 2011 *)
%Y A198863 Cf. A156977 (n^2 contains each digit once).
%K A198863 nonn,base,fini
%O A198863 1,1
%A A198863 _Pablo Martínez_, Oct 30 2011
%E A198863 All displayed terms are from _Charles R Greathouse IV_, _Alonso del Arte_ and _T. D. Noe_, Nov 08 2011