This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198866 #20 Jan 30 2025 11:47:19 %S A198866 1,4,0,9,6,2,4,0,0,4,0,0,2,5,9,6,2,4,9,2,3,5,5,9,3,9,7,0,5,8,9,4,9,3, %T A198866 5,4,7,1,2,3,5,4,8,3,5,1,0,7,8,9,0,1,5,1,5,1,0,1,6,6,8,3,0,0,9,9,1,8, %U A198866 3,6,0,1,6,7,3,1,8,1,4,5,2,5,1,6,8,7,4,8,9,2,1,4,3,2,5,9,0,7,9 %N A198866 Decimal expansion of x < 0 satisfying x^2 + sin(x) = 1. %C A198866 For many choices of a,b,c, there are exactly two numbers x having a*x^2 + b*sin(x) = c. %C A198866 Guide to related sequences, with graphs included in Mathematica programs: %C A198866 a.... b.... c.... x %C A198866 1.... 1.... 1.... A124597 %C A198866 1.... 1.... 1.... A198866, A198867 %C A198866 1.... 1.... 2.... A199046, A199047 %C A198866 1.... 1.... 3.... A199048, A199049 %C A198866 1.... 2.... 0.... A198414 %C A198866 1.... 2.... 1.... A199080, A199081 %C A198866 1.... 2.... 2.... A199082, A199083 %C A198866 1.... 2.... 3.... A199050, A199051 %C A198866 1.... 3.... 0.... A198415 %C A198866 1.... 3... -1.... A199052, A199053 %C A198866 1.... 3.... 1.... A199054, A199055 %C A198866 1.... 3.... 2.... A199056, A199057 %C A198866 1.... 3.... 3.... A199058, A199059 %C A198866 2.... 1.... 0.... A198583 %C A198866 2.... 1.... 1.... A199061, A199062 %C A198866 2.... 1.... 2.... A199063, A199064 %C A198866 2.... 1.... 3.... A199065, A199066 %C A198866 2.... 2.... 1.... A199067, A199068 %C A198866 2.... 2.... 3.... A199069, A199070 %C A198866 2.... 3.... 0.... A198605 %C A198866 2.... 3.... 1.... A199071, A199072 %C A198866 2.... 3.... 2.... A199073, A199074 %C A198866 2.... 3.... 3.... A199075, A199076 %C A198866 3.... 0.... 1.... A020760 %C A198866 3.... 1.... 1.... A199060, A199077 %C A198866 3.... 1.... 2.... A199078, A199079 %C A198866 3.... 1.... 3.... A199150, A199151 %C A198866 3.... 2.... 1.... A199152, A199153 %C A198866 3.... 2.... 2.... A199154, A199155 %C A198866 3.... 2.... 3.... A199156, A199157 %C A198866 3.... 3.... 1.... A199158, A199159 %C A198866 3.... 3.... 2.... A199160, A199161 %C A198866 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v), u, v) = 0. We call the graph of z=g(u,v) an implicit surface of f. %C A198866 For an example related to A198866, take f(x,u,v) = x^2 + u*sin(x) - v and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section. %H A198866 G. C. Greubel, <a href="/A198866/b198866.txt">Table of n, a(n) for n = 1..10000</a> %H A198866 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A198866 negative: -1.40962400400259624923559397058949354... %e A198866 positive: 0.63673265080528201088799090383828005... %t A198866 (* Program 1: this sequence and A198867 *) %t A198866 a = 1; b = 1; c = 1; %t A198866 f[x_] := a*x^2 + b*Sin[x]; g[x_] := c %t A198866 Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] %t A198866 r = x /. FindRoot[f[x] == g[x], {x, -1.41, -1.40}, WorkingPrecision -> 110] %t A198866 RealDigits[r] (* this sequence *) %t A198866 r = x /. FindRoot[f[x] == g[x], {x, .63, .64}, WorkingPrecision -> 110] %t A198866 RealDigits[r] (* A198867 *) %t A198866 (* Program 2: implicit surface of x^2+u*sin(x)=v *) %t A198866 f[{x_, u_, v_}] := x^2 + u*Sin[x] - v; %t A198866 t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0, 6}, {v, u, 12}]; %t A198866 ListPlot3D[Flatten[t, 1]] (* for this sequence *) %o A198866 (PARI) a=1; b=1; c=1; solve(x=-2, 0, a*x^2 + b*sin(x) - c) \\ _G. C. Greubel_, Feb 20 2019 %o A198866 (Sage) a=1; b=1; c=1; (a*x^2 + b*sin(x)==c).find_root(-2,0,x) # _G. C. Greubel_, Feb 20 2019 %Y A198866 Cf. A198867, A198755, A198414, A197737. %K A198866 nonn,cons %O A198866 1,2 %A A198866 _Clark Kimberling_, Nov 02 2011