This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198888 #19 Dec 15 2024 07:25:25 %S A198888 1,1,1,2,7,22,61,172,528,1695,5447,17486,56778,187064,622149,2080325, %T A198888 6990670,23621143,80230388,273687898,937072049,3219316096,11095261035, %U A198888 38351414036,132915860364,461770505371,1607875309626,5610314558562,19614016834508,68696001390320,241007011551493 %N A198888 G.f. A(x) satisfies A(x) = (1 + x*A(x))*(1 + x^3*A(x)^4). %H A198888 G. C. Greubel, <a href="/A198888/b198888.txt">Table of n, a(n) for n = 0..1000</a> %F A198888 a(n) = Sum_{k=0..[n/3]} C(n+k, k)*C(n+k+1, n-3*k)/(n+1). %F A198888 G.f. A(x) satisfies: %F A198888 (1) A(x) = (1/x)*Series_Reversion( x/(1+x) - x^4 ). [Corrected by _Seiichi Manyama_, Dec 15 2024] %F A198888 (2) A(x) = G(x*A(x)) where A(x/G(x)) = G(x) = (1 + x)/(1 - x^3 - x^4). %F A198888 (3) A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*x^(2*k)*A(x)^(3*k)] * x^n/n ). %F A198888 (4) A(x) = exp( Sum_{n>=1} [Sum_{k>=0} C(n+k,k)^2*x^(2*k)*A(x)^(3*k)]*(1-x^2*A(x)^3)^(2*n+1)* x^n/n ). %F A198888 Recurrence: 283*(n-2)*(n-1)*n*(n+1)*(23959952*n^4 - 257205740*n^3 + 1013304652*n^2 - 1735060589*n + 1087154052)*a(n) = 4*(n-2)*(n-1)*n*(8529742912*n^5 - 95830114896*n^4 + 406564828744*n^3 - 799079033082*n^2 + 700270562579*n - 198783157747)*a(n-1) - 8*(n-2)*(n-1)*(8625582720*n^6 - 109845231840*n^5 + 557377471920*n^4 - 1435513153260*n^3 + 1966313576808*n^2 - 1346689501571*n + 355664911636)*a(n-2) + 32*(n-2)*(4216951552*n^7 - 64244492224*n^6 + 407865945256*n^5 - 1396107234938*n^4 + 2774470392903*n^3 - 3187035309382*n^2 + 1946241786026*n - 482103205479)*a(n-3) - 16*(n-2)*(1150077696*n^7 - 19246341696*n^6 + 133834520688*n^5 - 499899483140*n^4 + 1078973257808*n^3 - 1338172075263*n^2 + 875535465587*n - 229801752572)*a(n-4) + 8*(n-4)*(2*n - 5)*(4*n - 17)*(4*n - 11)*(23959952*n^4 - 161365932*n^3 + 385447144*n^2 - 384228697*n + 132152327)*a(n-5). - _Vaclav Kotesovec_, Sep 18 2013 %F A198888 a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 3.686367878047643633... is the root of the equation -256 + 768*d - 5632*d^2 + 2880*d^3 - 1424*d^4 + 283*d^5 = 0 and c = 0.73361916425726935915879240304621641469885... - _Vaclav Kotesovec_, Sep 18 2013 %e A198888 G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 22*x^5 + 61*x^6 + 172*x^7 +... %e A198888 Related expansions: %e A198888 A(x)^4 = 1 + 4*x + 10*x^2 + 24*x^3 + 71*x^4 + 236*x^5 + 766*x^6 +... %e A198888 A(x)^5 = 1 + 5*x + 15*x^2 + 40*x^3 + 120*x^4 + 401*x^5 + 1340*x^6 +... %e A198888 where A(x) = 1 + x*A(x) + x^3*A(x)^4 + x^4*A(x)^5. %e A198888 The logarithm of the g.f. equals the series: %e A198888 log(A(x)) = (1 + x^2*A(x)^3)*x + (1 + 2^2*x^2*A(x)^3 + x^4*A(x)^6)*x^2/2 + %e A198888 (1 + 3^2*x^2*A(x)^3 + 3^2*x^4*A(x)^6 + x^6*A(x)^9)*x^3/3 + %e A198888 (1 + 4^2*x^2*A(x)^3 + 6^2*x^4*A(x)^6 + 4^2*x^6*A(x)^9 + x^8*A(x)^12)*x^4/4 + %e A198888 (1 + 5^2*x^2*A(x)^3 + 10^2*x^4*A(x)^6 + 10^2*x^6*A(x)^9 + 5^2*x^8*A(x)^12 + x^10*A(x)^15)*x^5/5 +... %e A198888 Explicitly, %e A198888 log(A(x)) = x + x^2/2 + 4*x^3/3 + 21*x^4/4 + 76*x^5/5 + 232*x^6/6 + 743*x^7/7 + 2629*x^8/8 + 9481*x^9/9 +... %t A198888 Table[Sum[Binomial[n+k,k]*Binomial[n+k+1,n-3*k]/(n+1),{k,0,Floor[n/3]}],{n,0,20}] (* _Vaclav Kotesovec_, Sep 18 2013 *) %o A198888 (PARI) {a(n)=sum(k=0, n\3, binomial(n+k, k)*binomial(n+k+1, n-3*k))/(n+1)} %o A198888 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^3*(A+x*O(x^n))^4)); polcoeff(A, n)} %o A198888 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(x^2*A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)} %o A198888 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, n, binomial(m+j, j)^2*(x^2*A^3+x*O(x^n))^j)*(1-x^2*A^3)^(2*m+1)*x^m/m))); polcoeff(A, n, x)} %Y A198888 Cf. A181734, A198957, A198953, A198951, A192415, A036765. %K A198888 nonn %O A198888 0,4 %A A198888 _Paul D. Hanna_, Nov 03 2011