A198901 Number of n X 3 0..4 arrays with values 0..4 introduced in row major order and no element equal to any horizontal or vertical neighbor.
2, 33, 1211, 50384, 2125425, 89793204, 3794115705, 160319061892, 6774239755817, 286243775060868, 12095158053422201, 511077834439270724, 21595464215307153225, 912510860892666556164, 38557914891188891686425
Offset: 1
Keywords
Examples
Some solutions with values 0 to 4 for n=4: ..0..1..2....0..1..2....0..1..2....0..1..0....0..1..0....0..1..0....0..1..2 ..1..0..3....1..3..1....2..3..1....1..0..2....2..3..2....2..0..3....2..3..1 ..2..1..4....4..1..0....4..0..2....3..4..3....3..2..4....4..2..0....1..4..0 ..4..0..3....2..0..2....0..1..3....1..2..1....2..1..0....3..0..4....3..0..4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A198906.
Formula
Empirical: a(n) = 51*a(n-1) - 393*a(n-2) + 1013*a(n-3) - 902*a(n-4) + 232*a(n-5).
Empirical g.f.: x*(2 - 69*x + 314*x^2 - 434*x^3 + 139*x^4) / ((1 - x)*(1 - 5*x + 2*x^2)*(1 - 45*x + 116*x^2)). - Colin Barker, Mar 02 2018
Comments