A198908 Number of n X 2 0..7 arrays with values 0..7 introduced in row major order and no element equal to any horizontal or vertical neighbor.
1, 4, 34, 500, 10867, 313132, 10856948, 418689772, 17067989413, 715189507700, 30371156968582, 1298083132473604, 55654030558406039, 2389712969490386908, 102686352402421016536, 4414019789796312628796, 189771542890022982723145
Offset: 1
Keywords
Examples
Some solutions with values 0 to 7 for n=5: ..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1 ..2..3....2..3....1..2....2..3....2..3....2..3....2..3....2..3....2..3....2..3 ..4..5....4..2....3..4....4..5....4..5....4..5....4..5....4..5....4..5....4..5 ..0..3....1..5....5..6....2..3....6..7....3..6....6..2....6..1....0..6....6..7 ..6..7....6..7....2..7....6..7....7..1....7..3....2..7....5..7....7..1....2..4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A198914.
Formula
Empirical: a(n) = 88*a(n-1) - 2613*a(n-2) + 33232*a(n-3) - 184531*a(n-4) + 400344*a(n-5) - 246519*a(n-6).
Conjectures from Colin Barker, Feb 22 2018: (Start)
G.f.: x*(1 - 84*x + 2295*x^2 - 25272*x^3 + 107312*x^4 - 128772*x^5) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 13*x)*(1 - 21*x)*(1 - 43*x)).
a(n) = (1036945 + 344344*3^n + 75465*7^n + 12040*13^n + 2795*21^n + 91*43^n) / 2817360.
(End)
Comments