cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198917 Decimal expansion of x>0 satisfying 3*x^2+cos(x)=3.

This page as a plain text file.
%I A198917 #9 Feb 07 2025 17:46:09
%S A198917 8,8,8,7,4,7,2,4,2,9,3,1,7,4,1,0,3,0,5,9,6,1,0,6,1,7,7,6,5,2,4,0,1,0,
%T A198917 9,1,6,7,2,2,9,6,0,1,7,5,9,8,3,5,2,1,0,9,0,0,7,0,2,8,6,8,3,2,0,2,4,0,
%U A198917 1,9,3,1,2,3,1,1,9,1,3,4,2,7,9,0,7,7,5,8,1,9,9,6,6,5,1,8,0,7,2
%N A198917 Decimal expansion of x>0 satisfying 3*x^2+cos(x)=3.
%C A198917 See A198755 for a guide to related sequences. The Mathematica program includes a graph.
%H A198917 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A198917 0.8887472429317410305961061776524010...
%t A198917 a = 3; b = 1; c = 3;
%t A198917 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c
%t A198917 Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
%t A198917 r = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110]
%t A198917 RealDigits[r] (* A198917 *)
%Y A198917 Cf. A198755.
%K A198917 nonn,cons
%O A198917 0,1
%A A198917 _Clark Kimberling_, Oct 31 2011