cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198976 Number of n X 2 0..5 arrays with values 0..5 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

1, 4, 34, 481, 8731, 174454, 3603244, 75251971, 1577395861, 33105096904, 695065679254, 14595390246661, 306496273473391, 6436373295247354, 135163500079092064, 2838431127851480551, 59607037068329713321
Offset: 1

Views

Author

R. H. Hardin, Nov 01 2011

Keywords

Comments

Column 2 of A198982.

Examples

			Some solutions with all values from 0 to 5 for n=4:
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..2..3....2..3....2..3....2..3....2..3....2..3....2..3....2..0....2..0....2..0
..4..5....4..2....1..4....0..4....4..5....4..0....4..5....3..1....3..4....3..4
..2..0....0..5....0..5....2..5....1..2....0..5....0..4....4..5....5..2....0..5
		

Crossrefs

Cf. A198982.

Formula

Empirical: a(n) = 32*a(n-1) - 262*a(n-2) + 672*a(n-3) - 441*a(n-4).
Conjectures from Colin Barker, Feb 22 2018: (Start)
G.f.: x*(1 - 28*x + 168*x^2 - 231*x^3) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 21*x)).
a(n) = (189 + 56*3^n + 18*7^n + 21^n) / 504.
(End)