This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199046 #12 Feb 07 2025 16:44:05 %S A199046 1,7,2,8,4,6,6,3,1,8,9,9,7,1,7,7,2,2,2,3,5,6,5,9,1,8,4,8,2,7,4,7,9,4, %T A199046 6,2,7,5,7,2,0,3,2,2,2,5,2,9,5,0,7,7,4,5,0,7,4,7,2,1,4,4,5,6,9,2,2,9, %U A199046 8,4,6,3,1,5,1,3,8,8,6,4,5,1,0,6,7,8,5,5,9,1,2,1,7,9,0,7,3,4,4 %N A199046 Decimal expansion of x<0 satisfying x^2 + sin(x) = 2. %C A199046 See A198866 for a guide to related sequences. The Mathematica program includes a graph. %H A199046 G. C. Greubel, <a href="/A199046/b199046.txt">Table of n, a(n) for n = 1..10000</a> %H A199046 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199046 negative: -1.72846631899717722235659184827479... %e A199046 positive: 1.06154977463138382560203340351989... %t A199046 a = 1; b = 1; c = 2; %t A199046 f[x_] := a*x^2 + b*Sin[x]; g[x_] := c %t A199046 Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] %t A199046 r = x /. FindRoot[f[x] == g[x], {x, -1.73, -1.72}, WorkingPrecision -> 110] %t A199046 RealDigits[r] (* A199046 *) %t A199046 r = x /. FindRoot[f[x] == g[x], {x, 1.06, 1.07}, WorkingPrecision -> 110] %t A199046 RealDigits[r] (* A199047 *) %o A199046 (PARI) a=1; b=1; c=0; solve(x=-2, 0, a*x^2 - c + b*sin(x)) \\ _G. C. Greubel_, Feb 19 2019 %o A199046 (Sage) a=1; b=1; c=2; (a*x^2 + b*sin(x)==c).find_root(-2,0,x) # _G. C. Greubel_, Feb 19 2019 %Y A199046 Cf. A198866. %K A199046 nonn,cons %O A199046 1,2 %A A199046 _Clark Kimberling_, Nov 02 2011